On the local spectral radius in partially ordered Banach spaces
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 835-841 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 34K40, 47A11, 47B60, 47B99
@article{CMJ_1999_49_4_a14,
     author = {Zima, Miros{\l}awa},
     title = {On the local spectral radius in partially ordered {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {835--841},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746709},
     zbl = {1008.47004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/}
}
TY  - JOUR
AU  - Zima, Mirosława
TI  - On the local spectral radius in partially ordered Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 835
EP  - 841
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/
LA  - en
ID  - CMJ_1999_49_4_a14
ER  - 
%0 Journal Article
%A Zima, Mirosława
%T On the local spectral radius in partially ordered Banach spaces
%J Czechoslovak Mathematical Journal
%D 1999
%P 835-841
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/
%G en
%F CMJ_1999_49_4_a14
Zima, Mirosława. On the local spectral radius in partially ordered Banach spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 835-841. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/

[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type. Math. Nachr. 145 (1990), 255–269. | DOI | MR

[2] J. Banaś: Applications of measures of noncompactness to various problems. Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). | MR

[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations. J. Anal. Appl. 16 (1997), 479–484. | MR | Zbl

[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type. Bull. Austral. Math. Soc. 54 (1996), 451–458. | DOI | MR

[5] J. Daneš: On local spectral radius. Čas. pěst. mat. 112 (1987), 177–187. | MR

[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian). Sib. Mat. Zhur. 7, 460–464.

[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations. Ann. Polon. Math. 64 (1996), 215–226. | DOI | MR | Zbl

[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 (1991), 155–166. | MR

[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations. Noordhoff, Groningen, 1972.

[10] V. Müller: Local spectral radius formula for operators in Banach spaces. Czechoslovak Math. J. 38 (1988), 726–729. | MR

[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian). Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. | MR

[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations. Bull. Austral. Math. Soc. 46 (1992), 179–186. | DOI | MR | Zbl

[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications. Bull. Austral. Math. Soc. 48 (1993), 427–434. | DOI | MR