@article{CMJ_1999_49_4_a14,
author = {Zima, Miros{\l}awa},
title = {On the local spectral radius in partially ordered {Banach} spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {835--841},
year = {1999},
volume = {49},
number = {4},
mrnumber = {1746709},
zbl = {1008.47004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/}
}
Zima, Mirosława. On the local spectral radius in partially ordered Banach spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 835-841. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a14/
[1] A. Augustynowicz, M. Kwapisz: On a numerical-analytic method of solving of boundary value problem for functional differential equation of neutral type. Math. Nachr. 145 (1990), 255–269. | DOI | MR
[2] J. Banaś: Applications of measures of noncompactness to various problems. Folia Scientiarum Universitatis Technicae Resoviensis 34 (1987). | MR
[3] D. Bugajewski: On some applications of theorems on the spectral radius to differential equations. J. Anal. Appl. 16 (1997), 479–484. | MR | Zbl
[4] D. Bugajewski, M. Zima: On the Darboux problem of neutral type. Bull. Austral. Math. Soc. 54 (1996), 451–458. | DOI | MR
[5] J. Daneš: On local spectral radius. Čas. pěst. mat. 112 (1987), 177–187. | MR
[6] A. R. Esayan: On the estimation of the spectral radius of the sum of positive semicommutative operators (in Russian). Sib. Mat. Zhur. 7, 460–464.
[7] L. Faina: Existence and continuous dependence for a class of neutral functional differential equations. Ann. Polon. Math. 64 (1996), 215–226. | DOI | MR | Zbl
[8] K.-H. Förster, B. Nagy: On the local spectral radius of a nonnegative element with respect to an irreducible operator. Acta Sci. Math. 55 (1991), 155–166. | MR
[9] M. A. Krasnoselski et al.: Approximate solutions of operator equations. Noordhoff, Groningen, 1972.
[10] V. Müller: Local spectral radius formula for operators in Banach spaces. Czechoslovak Math. J. 38 (1988), 726–729. | MR
[11] P. P. Zabrejko: The contraction mapping principle in K-metric and locally convex spaces (in Russian). Dokl. Akad. Nauk BSSR 34 (1990), 1065–1068. | MR
[12] M. Zima: A certain fixed point theorem and its applications to integral-functional equations. Bull. Austral. Math. Soc. 46 (1992), 179–186. | DOI | MR | Zbl
[13] M. Zima: A theorem on the spectral radius of the sum of two operators and its applications. Bull. Austral. Math. Soc. 48 (1993), 427–434. | DOI | MR