Extending $n$ times differentiable functions of several variables
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 825-830 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is shown that $n$ times Peano differentiable functions defined on a closed subset of $\mathbb{R}^m$ and satisfying a certain condition on that set can be extended to $n$ times Peano differentiable functions defined on $\mathbb{R}^m$ if and only if the $n$th order Peano derivatives are Baire class one functions.
It is shown that $n$ times Peano differentiable functions defined on a closed subset of $\mathbb{R}^m$ and satisfying a certain condition on that set can be extended to $n$ times Peano differentiable functions defined on $\mathbb{R}^m$ if and only if the $n$th order Peano derivatives are Baire class one functions.
Classification : 26A21, 26B05
@article{CMJ_1999_49_4_a12,
     author = {Fejzi\'c, Hajrudin and Rinne, Dan and Weil, Clifford},
     title = {Extending $n$ times differentiable functions of several variables},
     journal = {Czechoslovak Mathematical Journal},
     pages = {825--830},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746707},
     zbl = {1005.26007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a12/}
}
TY  - JOUR
AU  - Fejzić, Hajrudin
AU  - Rinne, Dan
AU  - Weil, Clifford
TI  - Extending $n$ times differentiable functions of several variables
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 825
EP  - 830
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a12/
LA  - en
ID  - CMJ_1999_49_4_a12
ER  - 
%0 Journal Article
%A Fejzić, Hajrudin
%A Rinne, Dan
%A Weil, Clifford
%T Extending $n$ times differentiable functions of several variables
%J Czechoslovak Mathematical Journal
%D 1999
%P 825-830
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a12/
%G en
%F CMJ_1999_49_4_a12
Fejzić, Hajrudin; Rinne, Dan; Weil, Clifford. Extending $n$ times differentiable functions of several variables. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 825-830. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a12/

[ALP1985] V. Aversa, M. Laczkovich, D. Preiss: Extension of differentiable functions. Comment. Math. Univ. Carolin. 26 (1985), 597–609. | MR

[BW1996] Z. Buczolich and C. E. Weil: Extending Peano differentiable functions. Atti Sem. Mat. Fis. Univ. Modena 44 (1996), no. 2, 323–330. | MR

[FMW1994] H. Fejzić, J. Mařík and C. E. Weil: Extending Peano derivatives. Math. Bohemica 119 (1994), 387–406. | MR

[FR1996] H. Fejzić and D. Rinne: Continuity properties of Peano derivatives in several variables. Real Analysis Exch. 21 (1995–96), 292–298. | MR

[H1962] F. Hausdorff: Set Theory. Chelsea, 1962. | MR

[J1923] V. Jarník: Sur l’extension du domaine de definition des fonctions d’une variable, qui laisse intacte la derivabitité de la fonction. Bull international de l’Acad Sci de Boheme (1923).

[M1984] J. Mařík: Derivatives and closed sets. Acta Math. Hungar. 43 (1984), 25–29. | DOI | MR

[PL1974] G. Petruska and M. Lackovich: Baire 1 functions, approximately continuous functions and derivatives. Acta Math. Acad Sci. Hungar. 25 (1974), 189–212. | DOI | MR

[S1970] E. M. Stein: Singular integrals and differentiability properties of functions. Princeton University Press, Princeton, NJ, USA, 1970. | MR | Zbl