The structure of transitive ordered permutation groups
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 811-815 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We give some necessary and sufficient conditions for transitive $l$-permutation groups to be $2$-transitive. We also discuss primitive components and give necessary and sufficient conditions for transitive $l$-permutation groups to be normal-valued.
We give some necessary and sufficient conditions for transitive $l$-permutation groups to be $2$-transitive. We also discuss primitive components and give necessary and sufficient conditions for transitive $l$-permutation groups to be normal-valued.
Classification : 06C15, 06F15
Keywords: transitive $l$-permutation group; stabilizer subgroup; primitive component; normal-valued $l$-group.
@article{CMJ_1999_49_4_a10,
     author = {Zhu, Zuo-Tong, and Zhenyu, Huang},
     title = {The structure of transitive ordered permutation groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {811--815},
     year = {1999},
     volume = {49},
     number = {4},
     mrnumber = {1746705},
     zbl = {1007.06012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a10/}
}
TY  - JOUR
AU  - Zhu, Zuo-Tong,
AU  - Zhenyu, Huang
TI  - The structure of transitive ordered permutation groups
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 811
EP  - 815
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a10/
LA  - en
ID  - CMJ_1999_49_4_a10
ER  - 
%0 Journal Article
%A Zhu, Zuo-Tong,
%A Zhenyu, Huang
%T The structure of transitive ordered permutation groups
%J Czechoslovak Mathematical Journal
%D 1999
%P 811-815
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a10/
%G en
%F CMJ_1999_49_4_a10
Zhu, Zuo-Tong,; Zhenyu, Huang. The structure of transitive ordered permutation groups. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 4, pp. 811-815. http://geodesic.mathdoc.fr/item/CMJ_1999_49_4_a10/

[1] W. C. Holland: Transitive lattice-ordered permutation groups. Math. Zeit. 87 (1965), 420–433; MR31 (1966), # 2310. | DOI | MR | Zbl

[2] A. M. W. Glass: Ordered Permutation Groups. Cambridge University Press, 1981, pp. 76–116. | MR | Zbl

[3] Z. T. Zhu and J. M. Huang: Stability of $l$-permutation groups. J. of Nanjing Uni. Math. Biquarterly 11, No. 1 (1994), 18–21. | MR

[4] M. Anderson and T. Feil: Lattice-Ordered Groups. D. Reidel Publishing Company, Dordrecht, Holland, 1988, pp. 29–31. | MR

[5] Z. T. Zhu and J. M. Huang: Congruent pairs on a set. Chinese Quarterly Journal of Math. 9, No. 3 (1994), 37–41.

[6] S. H. McClearly: The structure of intransitive ordered permutation groups. Algebra Universalis 6 (1976), 229–255. | DOI | MR

[7] A. M. W. Glass: Elementary types of automorphisms of linearly ordered sets—a survey. Algebra, Carbondale 1980, R.K. Amayo (ed.), Springer, Lecture Notes No. 848, pp. 218–229. | MR | Zbl

[8] S. H. McClearly: The structure of ordered permutation groups applied to lattice-ordered groups. Notices Amer. Math. Soc., 21 (1974), February, # 712–714, PA336.

[9] Z.T. Zhu and Q. Chen: The universal mapping problems of the $l$-group category. Chinese Journal of Math. 23, No. 2 (1995), 131–140. | MR

[10] A. M. W. Glass and W. C. Holland (Eds): Lattice-Ordered Groups. Kluwer Academic Publishers, 1989, pp. 23–40. | MR