On the topological boundary of the one-sided spectrum
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 561-568 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
It is well-known that the topological boundary of the spectrum of an operator is contained in the approximate point spectrum. We show that the one-sided version of this result is not true. This gives also a negative answer to a problem of Schmoeger.
Classification : 47A10
@article{CMJ_1999_49_3_a8,
     author = {M\"uller, Vladim{\'\i}r},
     title = {On the topological boundary of the one-sided spectrum},
     journal = {Czechoslovak Mathematical Journal},
     pages = {561--568},
     year = {1999},
     volume = {49},
     number = {3},
     mrnumber = {1708358},
     zbl = {1008.47003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a8/}
}
TY  - JOUR
AU  - Müller, Vladimír
TI  - On the topological boundary of the one-sided spectrum
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 561
EP  - 568
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a8/
LA  - en
ID  - CMJ_1999_49_3_a8
ER  - 
%0 Journal Article
%A Müller, Vladimír
%T On the topological boundary of the one-sided spectrum
%J Czechoslovak Mathematical Journal
%D 1999
%P 561-568
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a8/
%G en
%F CMJ_1999_49_3_a8
Müller, Vladimír. On the topological boundary of the one-sided spectrum. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 561-568. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a8/

[1] G.R. Allan: Holomorphic vector-valued functions on a domain of holomorphy. J. London Math. Soc. 42 (1967), 509–513. | DOI | MR | Zbl

[2] J. Diestel, J.J. Uhl, Jr.: Vector measures. Math. Surveys 15, Amer. Math. Soc., Providence, Rhode Island, 1977. | MR

[3] R. Harte: Spectral mapping theorems. Proc. Roy. Irish. Acad. Sect. A 73 (1973), 89–107. | MR | Zbl

[4] T. Kato: Perturbation theory for nullity, deficiency and other quantities of linear operators. J. Anal. Math. 6 (1958), 261–322. | DOI | MR | Zbl

[5] V. Kordula, V. Müller: The distance from the Apostol spectrum. Proc. Amer. Math. Soc. (to appear). | MR

[6] M. Mbekhta: Résolvant généralisé et théorie spectrale. J. Operator Theory 21 (1989), 69–105. | MR | Zbl

[7] V. Müller: On the regular spectrum. J. Operator Theory (to appear). | MR

[8] V. Rakočevič: Generalized spectrum and commuting compact perturbations. Proc. Edinb. Math. Soc. 36 (1993), 197–208. | DOI | MR

[9] P. Saphar: Contributions à l’étude des applications linéaires dans un espace de Banach. Bull. Soc. Math. France 92 (1964), 363–384. | DOI | MR

[10] Ch. Schmoeger: The stability radius of an operator of Saphar typex. Studia Math. 113 (1995), 169–175. | DOI | MR

[11] N. Tomczak-Jaegermann: Banach-Mazur distances and finite-dimensional operator ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, Longman Scientific & Technical, Harlow, 1989. | MR | Zbl