@article{CMJ_1999_49_3_a5,
author = {Jakub{\'\i}k, J\'an},
title = {Cantor-Bernstein theorem for $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {517--526},
year = {1999},
volume = {49},
number = {3},
mrnumber = {1708370},
zbl = {1004.06011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a5/}
}
Jakubík, Ján. Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 517-526. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a5/
[1] P. Conrad, D. McAlister: The completion of lattice ordered groups. Journ. Austral. Math. Soc. 9 (1969), 182–208. | DOI | MR
[2] D. Gluschankof: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249–263. | MR | Zbl
[3] J. Jakubík: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159–175. | MR
[4] J. Jakubík: Direct product decompositions of $MV$-algebras. Czechoslovak Math. J. 44 (1994), 725–739. | MR
[5] J. Jakubík: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221–230. | MR
[6] J. Jakubík: On complete $MV$-algebras. Czechoslovak Math. J. 45 (1995), 473–480. | MR
[7] L. V. Kantorovič, B. Z. Vulich, A. G. Pinsker: Functional Analysis in Semiordered Spaces. Moskva, 1950. (Russian)
[8] D. Mundici: Interpretation of $AFC^*$-algebras in Łukasiewicz sentential calculus. Journ. Functional. Anal. 65 (1986), 15–63. | DOI | MR
[9] R. Sikorski: A generalization of theorem of Banach and Cantor-Bernstein. Coll. Math. 1 (1948), 140–144. | MR
[10] R. Sikorski: Boolean Algebras. Second Edition, Springer Verlag, Berlin, 1964. | MR | Zbl
[11] A. Tarski: Cardinal Algebras. New York, 1949. | Zbl