Locally symmetric immersions
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 491-506 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also taken into consideration and several examples are given.
We use reflections with respect to submanifolds and related geometric results to develop, inspired by the work of Ferus and other authors, in a unified way a local theory of extrinsic symmetric immersions and submanifolds in a general analytic Riemannian manifold and in locally symmetric spaces. In particular we treat the case of real and complex space forms and study additional relations with holomorphic and symplectic reflections when the ambient space is almost Hermitian. The global case is also taken into consideration and several examples are given.
Classification : 53B25, 53C35, 53C40, 53C42
Keywords: reflections; (locally) symmetric immersions; extrinsic (locally) symmetric submanifolds; parallel immersions; (locally) symmetric spaces
@article{CMJ_1999_49_3_a3,
     author = {Gonz\'alez-D\'avila, J. C. and Vanhecke, L.},
     title = {Locally symmetric immersions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {491--506},
     year = {1999},
     volume = {49},
     number = {3},
     mrnumber = {1708378},
     zbl = {1015.53014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a3/}
}
TY  - JOUR
AU  - González-Dávila, J. C.
AU  - Vanhecke, L.
TI  - Locally symmetric immersions
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 491
EP  - 506
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a3/
LA  - en
ID  - CMJ_1999_49_3_a3
ER  - 
%0 Journal Article
%A González-Dávila, J. C.
%A Vanhecke, L.
%T Locally symmetric immersions
%J Czechoslovak Mathematical Journal
%D 1999
%P 491-506
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a3/
%G en
%F CMJ_1999_49_3_a3
González-Dávila, J. C.; Vanhecke, L. Locally symmetric immersions. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 491-506. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a3/

[BR] E. Backes and H. Reckziegel: On symmetric submanifolds of spaces of constant curvature. Math. Ann. 263 (1983), 419–433. | DOI | MR

[C] B. Y. Chen: Geometry of submanifolds. Pure and Appl. Math. 22, Marcel Dekker, New York, 1973. | MR | Zbl

[CO] B. Y. Chen and K. Ogiue: On totally real submanifolds. Trans. Amer. Math. Soc. 193 (1974), 257–266. | DOI | MR

[ChV] B. Y. Chen and L. Vanhecke: Isometric, holomorphic and symplectic reflections. Geom. Dedicata 29 (1989), 259–277. | DOI | MR

[F] D. Ferus: Symmetric submanifolds of Euclidean space. Math. Ann. 247 (1980), 81–93. | DOI | MR | Zbl

[KN] S. Kobayashi and K. Nomizu: Foundations of differential geometry, I, II. Interscience Publ., New York, 1963, 1969. | MR

[K] M. Kon: On some complex submanifolds in Kaehler manifolds. Canad. J. Math. 26 (1974), 1442–1449. | DOI | MR | Zbl

[KV] O. Kowalski and L. Vanhecke: Geodesic spheres and a new recursion formula on Riemannian manifolds. Rend. Sem. Mat. Univ. Politec. Torino 45 (1987), 119–132. | MR

[N2] H. Naitoh: Isotropic submanifolds with parallel second fundamental forms in symmetric spaces. Osaka J. Math. 17 (1980), 95–110. | MR | Zbl

[N1] H. Naitoh: Totally real parallel submanifolds in $P^{n}(c)$. Tokyo J. Math. 4 (1981), 279–306. | DOI | MR

[N] H. Naitoh: Parallel submanifolds of complex space forms I. Nagoya Math. J. 90 (1983), 85–117. | DOI | MR | Zbl

[N3] H. Naitoh: Symmetric submanifolds of compact symmetric spaces. Differential Geometry of Submanifolds, Proceedings, Kyoto 1984, K. Kenmotsu (ed.), Lecture Notes in Math. 1090, Springer-Verlag, Berlin, Heidelberg, New York, 1984, pp. 116–128. | MR | Zbl

[NT1] H. Naitoh and M. Takeuchi: Totally real submanifolds and symmetric bounded domains. Osaka J. Math. 19 (1982), 717–731. | MR

[NT] H. Nakagawa and R. Takagi: On locally symmetric Kaehler submanifolds in a complex projective space. J. Math. Soc. Japan 28 (1976), 638–667. | DOI | MR

[NV] L. Nicolodi and L. Vanhecke: Rotations on a Riemannian manifold. Proc. Workshop on Recent Topics in Differential Geometry, Puerto de La Cruz 1990, D. Chinea and J. M. Sierra (eds.), Secret. Public. Univ. de La Laguna, Serie Informes 32, 1991, pp. 89–101. | MR

[Nomi] K. Nomizu: Conditions for constancy of the holomorphic sectional curvature. J. Differential Geom. 8 (1973), 335–339. | DOI | MR | Zbl

[SV] K. Sekigawa and L. Vanhecke: Symplectic geodesic symmetries on Kähler manifolds. Quart. J. Math. Oxford 37 (1986), 95–103. | DOI | MR

[S] W. Strübing: Symmetric submanifolds of Riemannian manifolds. Math. Ann. 245 (1979), 37–44. | DOI | MR

[T] M. Takeuchi: Parallel submanifolds of space forms. Manifolds and Lie groups, Papers in honor of Yozô Matsushima eds J. Hano, A. Morimoto, S. Murakami, K. Okamoto, H. Ozeki, Progress in Math., Birkhäuser, Boston, Basel, Stuttgart, 1981, pp. 429–447. | MR | Zbl

[TV] Ph. Tondeur and L. Vanhecke: Reflections in submanifolds. Geom. Dedicata 28 (1988), 77–85. | DOI | MR

[Ts] K. Tsukada: Parallel Kaehler submanifolds of Hermitian symmetric spaces. Math. Z. 190 (1985), 129–150. | DOI | MR | Zbl

[V] L. Vanhecke: Geometry in normal and tubular neighborhoods. Rend. Sem. Fac. Sci. Univ. Cagliari, Supplemento al vol. 58 (1988), 73–176. | MR

[VW] L. Vanhecke and T. J. Wilmore: Interactions of tubes and spheres. Math. Ann. 263 (1983), 31–42. | DOI | MR

[YM] K. Yano and I. Mogi: On real representations of Kaehlerian manifolds. Ann. of Math. 61 (1955), 170–189. | DOI | MR