On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 657-672 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^{(n)}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
Every separable Banach space with $C^{(n)}$-smooth norm (Lipschitz bump function) admits an equivalent norm (a Lipschitz bump function) which is both uniformly Gâteaux smooth and $C^{(n)}$-smooth. If a Banach space admits a uniformly Gâteaux smooth bump function, then it admits an equivalent uniformly Gâteaux smooth norm.
Classification : 46B03, 46B20
@article{CMJ_1999_49_3_a15,
     author = {Fabian, Mari\'an and Zizler, V\'aclav},
     title = {On uniformly {G\^ateaux} smooth $C^{(n)}$-smooth norms on separable {Banach} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {657--672},
     year = {1999},
     volume = {49},
     number = {3},
     mrnumber = {1708330},
     zbl = {1011.46010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a15/}
}
TY  - JOUR
AU  - Fabian, Marián
AU  - Zizler, Václav
TI  - On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 657
EP  - 672
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a15/
LA  - en
ID  - CMJ_1999_49_3_a15
ER  - 
%0 Journal Article
%A Fabian, Marián
%A Zizler, Václav
%T On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces
%J Czechoslovak Mathematical Journal
%D 1999
%P 657-672
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a15/
%G en
%F CMJ_1999_49_3_a15
Fabian, Marián; Zizler, Václav. On uniformly Gâteaux smooth $C^{(n)}$-smooth norms on separable Banach spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 657-672. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a15/

[BF] J.M. Borwein, M. Fabian: On convex functions having points of Gâteaux differentiability which are not points of Fréchet differentiability. Canadian J. Math. 45 (1993), 1121–1134. | DOI | MR

[C] H. Cartan: Calcul différentiel formes différentielles. Herman, Paris 1967. | MR

[DGZ] R. Deville, G. Godefroy, V. Zizler: Smoothness and renormings in Banach spaces. Pitman Monographs, No. 64, Longman House, Harlow, 1993. | MR

[FWZ] M. Fabian, J.H.M. Whitfield, V. Zizler: Norms with locally Lipschitzian derivatives. Israel J. Math. 44 (1983), 262–276. | DOI | MR

[MV] D.P. McLaughlin, J.D. Vanderwerff: Higher oreder Gâteaux smooth bump functions on Banach spaces. Bull. Australian Math. Soc. 51 (1995), 291–300. | DOI | MR

[P] R.R. Phelps: Convex functions, monotone operators and differentiability. Lecture Notes in Math. No. 1364, Springer Verlag, 1993. | MR | Zbl

[T] W.K. Tang: Uniformly differentiable bump functions. Preprint. | MR | Zbl