Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 633-644 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper deals with embeddings of function spaces of variable order of differentiation in function spaces of variable order of integration. Here the function spaces of variable order of differentiation are defined by means of pseudodifferential operators.
The paper deals with embeddings of function spaces of variable order of differentiation in function spaces of variable order of integration. Here the function spaces of variable order of differentiation are defined by means of pseudodifferential operators.
Classification : 35S05, 46E35
Keywords: function spaces embedding theorems; embedding theorems
@article{CMJ_1999_49_3_a13,
     author = {Leopold, Hans-Gerd},
     title = {Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration},
     journal = {Czechoslovak Mathematical Journal},
     pages = {633--644},
     year = {1999},
     volume = {49},
     number = {3},
     mrnumber = {1708338},
     zbl = {1008.46015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/}
}
TY  - JOUR
AU  - Leopold, Hans-Gerd
TI  - Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 633
EP  - 644
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/
LA  - en
ID  - CMJ_1999_49_3_a13
ER  - 
%0 Journal Article
%A Leopold, Hans-Gerd
%T Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration
%J Czechoslovak Mathematical Journal
%D 1999
%P 633-644
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/
%G en
%F CMJ_1999_49_3_a13
Leopold, Hans-Gerd. Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 633-644. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/

[ER] Edmunds, D. E. and Rákosník, J.: Density of smooth functions in $W^{k,p(x)}$. Proc. R. Soc. Lond. A 437 (1992), 229–236. | DOI | MR

[Il] Illner R.: A class of $L^p$-bounded pseudodifferential operators. Proc. Amer. Mat. Soc. 51 (1975), 347–355. | MR | Zbl

[JL] Jacob, N. and Leopold, H.-G.: Pseudodifferential operators with variable order of differentiation generating Feller semigroups. Integral Equations and Operator Theory 17 (1994), 151–166. | MR

[KN] Kikuchi, K. and Negoro, A.: Pseudodifferential operators and Sobolev spaces of variable order of differentiation. Rep. Fac. Liberal Arts, Shizuoka University, Sciences, 31 (1995), 19–27.

[KR] Kováčik, O. and Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41 (1991), 592–618. | MR

[Kg] Kumano-go, H.: Pseudo-Differential Operators. Massachusetts Institute of Technology Press, Cambridge (Massachusetts)-London, 1981.

[Le1] Leopold, H.-G.: On Besov spaces of variable order of differentiation. Z. Anal. Anw. 8 (1989), 69–82. | DOI | MR | Zbl

[Le2] Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3 (1991), 1–21. | DOI | MR | Zbl

[Ne] Negoro, A.: Stable-like processes; construction of the transition density and the behavior of sample paths near $t=0$. Osaka J. Math. 31 (1994), 189–214. | MR | Zbl

[Sa] Samko, S. G.: Differentiation and integration of variable order and the spaces $L^{p(x)}$. Preprint, 1996. | MR

[Sh] Sharapudinov, I. I.: On a topology of the space $L^{p(t)}([0,1])$. Matem. Zametki 26 (1979), 613–632. | MR

[Ta] Taylor, M. E.: Pseudodifferential Operators. Princeton University Press, Princeton (New Jersey), 1981. | MR | Zbl

[Tr] Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel, 1983. | MR | Zbl

[Ts] Tsenov, I. V.: A generalization of the problem of the best approximation in the space $L^s$. Uchen. Zap. Daghestan Gos. Univ 7 (1961), 25–37.