Keywords: function spaces embedding theorems; embedding theorems
@article{CMJ_1999_49_3_a13,
author = {Leopold, Hans-Gerd},
title = {Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration},
journal = {Czechoslovak Mathematical Journal},
pages = {633--644},
year = {1999},
volume = {49},
number = {3},
mrnumber = {1708338},
zbl = {1008.46015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/}
}
TY - JOUR AU - Leopold, Hans-Gerd TI - Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration JO - Czechoslovak Mathematical Journal PY - 1999 SP - 633 EP - 644 VL - 49 IS - 3 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/ LA - en ID - CMJ_1999_49_3_a13 ER -
%0 Journal Article %A Leopold, Hans-Gerd %T Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration %J Czechoslovak Mathematical Journal %D 1999 %P 633-644 %V 49 %N 3 %U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/ %G en %F CMJ_1999_49_3_a13
Leopold, Hans-Gerd. Embedding of function spaces of variable order of differentiation in function spaces of variable order of integration. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 633-644. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a13/
[ER] Edmunds, D. E. and Rákosník, J.: Density of smooth functions in $W^{k,p(x)}$. Proc. R. Soc. Lond. A 437 (1992), 229–236. | DOI | MR
[Il] Illner R.: A class of $L^p$-bounded pseudodifferential operators. Proc. Amer. Mat. Soc. 51 (1975), 347–355. | MR | Zbl
[JL] Jacob, N. and Leopold, H.-G.: Pseudodifferential operators with variable order of differentiation generating Feller semigroups. Integral Equations and Operator Theory 17 (1994), 151–166. | MR
[KN] Kikuchi, K. and Negoro, A.: Pseudodifferential operators and Sobolev spaces of variable order of differentiation. Rep. Fac. Liberal Arts, Shizuoka University, Sciences, 31 (1995), 19–27.
[KR] Kováčik, O. and Rákosník, J.: On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J. 41 (1991), 592–618. | MR
[Kg] Kumano-go, H.: Pseudo-Differential Operators. Massachusetts Institute of Technology Press, Cambridge (Massachusetts)-London, 1981.
[Le1] Leopold, H.-G.: On Besov spaces of variable order of differentiation. Z. Anal. Anw. 8 (1989), 69–82. | DOI | MR | Zbl
[Le2] Leopold, H.-G.: On function spaces of variable order of differentiation. Forum Math. 3 (1991), 1–21. | DOI | MR | Zbl
[Ne] Negoro, A.: Stable-like processes; construction of the transition density and the behavior of sample paths near $t=0$. Osaka J. Math. 31 (1994), 189–214. | MR | Zbl
[Sa] Samko, S. G.: Differentiation and integration of variable order and the spaces $L^{p(x)}$. Preprint, 1996. | MR
[Sh] Sharapudinov, I. I.: On a topology of the space $L^{p(t)}([0,1])$. Matem. Zametki 26 (1979), 613–632. | MR
[Ta] Taylor, M. E.: Pseudodifferential Operators. Princeton University Press, Princeton (New Jersey), 1981. | MR | Zbl
[Tr] Triebel, H.: Theory of Function Spaces. Birkhäuser, Basel, 1983. | MR | Zbl
[Ts] Tsenov, I. V.: A generalization of the problem of the best approximation in the space $L^s$. Uchen. Zap. Daghestan Gos. Univ 7 (1961), 25–37.