U-ideals of factorable operators
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 607-616 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are $u$-ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space.
We suggest a method of renorming of spaces of operators which are suitably approximable by sequences of operators from a given class. Further we generalize J. Johnsons’s construction of ideals of compact operators in the space of bounded operators and observe e.g. that under our renormings compact operators are $u$-ideals in the: space of 2-absolutely summing operators or in the space of operators factorable through a Hilbert space.
Classification : 46A32, 46B20, 46B25, 46B28, 46B99, 46H10, 47L20
Keywords: factorization of linear operators; u-ideal; approximation properties; unconditional basis
@article{CMJ_1999_49_3_a11,
     author = {John, Kamil},
     title = {U-ideals of factorable operators},
     journal = {Czechoslovak Mathematical Journal},
     pages = {607--616},
     year = {1999},
     volume = {49},
     number = {3},
     mrnumber = {1708346},
     zbl = {1008.46002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a11/}
}
TY  - JOUR
AU  - John, Kamil
TI  - U-ideals of factorable operators
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 607
EP  - 616
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a11/
LA  - en
ID  - CMJ_1999_49_3_a11
ER  - 
%0 Journal Article
%A John, Kamil
%T U-ideals of factorable operators
%J Czechoslovak Mathematical Journal
%D 1999
%P 607-616
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a11/
%G en
%F CMJ_1999_49_3_a11
John, Kamil. U-ideals of factorable operators. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 3, pp. 607-616. http://geodesic.mathdoc.fr/item/CMJ_1999_49_3_a11/

[E,J] G. Emmanuele, K. John: Some remarks on the position of the space ${\mathcal K}(X,Y)$ inside the space ${\mathcal W}(X,Y)$. New Zealand J. Math. 26(2) (1997), 183–189. | MR

[F] J. H. Fourie: Projections on operator duals. Quaestiones Math. 21 (1998), 11–18. | DOI | MR | Zbl

[G,K,S] G. Godefroy, N. J. Kalton, P. D. Saphar: Unconditional ideals in Banach spaces. Studia Math. 104 (1) (1993), 13–59. | MR

[H,W,W] P. Harmand, D. Werner, W. Werner: M-ideals in Banach Spaces and Banach Algebras. Lecture Notes in Math., 1547, Springer, Berlin, 1993. | MR

[J1] K. John: On the space ${\mathcal K}(P,P^\ast )$ of compact operators on Pisier space P. Note di Matematica 12 (1992), 69–75. | MR

[J2] K. John: On a result of J. Johnson. Czechoslovak Math. Journal 45 (1995), 235–240. | MR | Zbl

[Jo] J. Johnson: Remarks on Banach spaces of compact operators. J. Funct. Analysis 32 (1979), 304–311. | DOI | MR | Zbl

[Ka] N. J. Kalton: Spaces of compact operators. Math. Annalen 208 (1974), 267–278. | DOI | MR | Zbl

[Li] Å. Lima: Property $(wM^*)$ and the unconditional metric approximation property. Studia Math. 113 (3) (1995), 249–263. | DOI | MR | Zbl

[LT,I] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Sequence Spaces. EMG 92 Springer Verlag (1977). | MR

[LT,II] J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces, Function Spaces. EMG 97 Springer Verlag (1979). | MR

[Pie] A. Pietsch: Operator ideals. Berlin, Deutscher Verlag der Wissenschaften, 1978. | MR | Zbl

[Pi] J. Pisier: Counterexamples to a conjecture of Grothendieck. Acta Mat. 151 (1983), 180–208. | MR | Zbl

[Ru] W. Ruess: Duality and Geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Math. Studies 90, North Holland, 1984, pp. 59–78. | MR | Zbl