Weak orthogonality and weak property ($\beta $) in some Banach sequence spaces
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 303-316 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is proved that a Köthe sequence space is weakly orthogonal if and only if it is order continuous. Criteria for weak property (${\mathbf \beta }$) in Orlicz sequence spaces in the case of the Luxemburg norm as well as the Orlicz norm are given.
It is proved that a Köthe sequence space is weakly orthogonal if and only if it is order continuous. Criteria for weak property (${\mathbf \beta }$) in Orlicz sequence spaces in the case of the Luxemburg norm as well as the Orlicz norm are given.
Classification : 46A45, 46B10, 46B20, 46B45, 46E30, 46E40
Keywords: Köthe sequence space; Orlicz sequence space; weak orthogonality; weak property (${\mathbf \beta }$)
@article{CMJ_1999_49_2_a7,
     author = {Cui, Yunan and Hudzik, Henryk and P{\l}uciennik, Ryszard},
     title = {Weak orthogonality and weak property ($\beta $) in some {Banach} sequence spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {303--316},
     year = {1999},
     volume = {49},
     number = {2},
     mrnumber = {1692465},
     zbl = {0954.46004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a7/}
}
TY  - JOUR
AU  - Cui, Yunan
AU  - Hudzik, Henryk
AU  - Płuciennik, Ryszard
TI  - Weak orthogonality and weak property ($\beta $) in some Banach sequence spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 303
EP  - 316
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a7/
LA  - en
ID  - CMJ_1999_49_2_a7
ER  - 
%0 Journal Article
%A Cui, Yunan
%A Hudzik, Henryk
%A Płuciennik, Ryszard
%T Weak orthogonality and weak property ($\beta $) in some Banach sequence spaces
%J Czechoslovak Mathematical Journal
%D 1999
%P 303-316
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a7/
%G en
%F CMJ_1999_49_2_a7
Cui, Yunan; Hudzik, Henryk; Płuciennik, Ryszard. Weak orthogonality and weak property ($\beta $) in some Banach sequence spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 303-316. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a7/

[CS] S.T. Chen: Geometry of Orlicz Spaces. Dissertationes Math. 356 (1996), 1–204. | MR | Zbl

[De] J. Diestel: Sequence and Series in Banach Spaces. (1984), Graduate Texts in Math. 92, Springer-Verlag. | MR

[F] J. Garcia Falset: The fixed point property in Banach spaces whose characteristic of uniform convexity is less than 2. J. Austral Math. Soc. Ser. A 54 (1993), 169–173. | DOI | MR | Zbl

[GH] R. Grzślewicz and H. Hudzik: Smooth points in Orlicz spaces equipped with Luxemburg norm. Math. Nachr. 44 (3) (1992), 505–515. | MR

[H1] H. Hudzik: Uniformly non-$l_n^{(1)}$ Orlicz spaces with Luxemburg norm. Studia Math. 81.3 (1985), 271–284. | DOI | MR

[H2] H. Hudzik: Every nonreflexive Banach lattice has the packing constant equal to $\frac{1}{2}$. Collect. Math. 44 (1993), 129–134. | MR

[HM] H. Hudzik and M. Mastyło: Almost isometric copies of $l_\infty $ in some Banach spaces. Proc. Amer. Math. Soc. 119.1 (1993), 209–215. | MR

[Ka] A. Kamińska: On uniform convexity of Orlicz spaces. Indagationes Math. 44 (1982), 27–36. | DOI | MR

[k] L.V. Kantorovich and G. P. Akilov: Functional Analysis. Nauka Moscow, 1977. (Russian) | MR

[Ko] C.A. Kottman: Packing and reflexivity in Banach spaces. Trans. Amer. Math. Soc. 150 (1970), 565–576. | DOI | MR | Zbl

[KR] M.A. Krasnoselskii and Ya. B. Rutickii: Convex Functions and Orlicz Spaces. Nordhoff Groningen, 1961.

[Ku] D.N. Kutzarowa: An isomorphic characterization of property $(\beta )$ of Rolewicz. Note Mat. 10.2 (1990), 347–354. | MR

[KMP] D.N. Kutzarowa, E. Maluta and S. Prus: Property ($\beta $) implies normal structure of the dual space. Rend. Circ. Math. Palermo, 41 (1992), 335–368. | MR

[LT] J. Lindenstrauss and L. Tzafriri: Classical Banach Spaces II. vol. 338, Lecture Notes in Math. 338, 1973. | MR

[L] W.A.J. Luxemburg: Banach Function Spaces. Thesis, Delft, 1955. | MR | Zbl

[M] J. Musielak: Orlicz Spaces and Modular Spaces. Lecture Notes in Math. 1034, 1983. | MR | Zbl

[RAO] M.M. Rao and Z. D. Ren: Theory of Orlicz Spaces. Marcel Dekker Inc., New York, Basel, Hong Kong, 1991. | MR

[R2] S. Rolewicz: On $\Delta $-uniform convexity and drop property. Studia Math. 87 (1987), 181–191. | DOI | MR | Zbl

[W] T.F. Wang: Packing sphere of Orlicz sequence spaces equipped with Orlicz norm. Chinese Ann. Math. 6A:5 (1985), 567–574.

[Y] Y.I. Ye: Packing spheres in Orlicz sequence spaces. Chinese Ann. Math. 4A (1983), 487–493. | MR | Zbl