Triangular stochastic matrices generated by infinitesimal elements
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 249-254
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We show that each element in the semigroup $S_n$ of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of $S_n$, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.
We show that each element in the semigroup $S_n$ of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of $S_n$, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.
@article{CMJ_1999_49_2_a3,
author = {Chon, Inheung and Min, Hyesung},
title = {Triangular stochastic matrices generated by infinitesimal elements},
journal = {Czechoslovak Mathematical Journal},
pages = {249--254},
year = {1999},
volume = {49},
number = {2},
mrnumber = {1692481},
zbl = {0949.22021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/}
}
Chon, Inheung; Min, Hyesung. Triangular stochastic matrices generated by infinitesimal elements. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 249-254. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/
[1] I. Chon: Lie group and control theory. Ph.D. thesis at Louisiana state university, 1988.
[2] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960. | MR
[3] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338–340. | DOI | MR | Zbl
[4] C. Loewner: A theorem on the partial order derived from a certain transformation semigroup. Math. Zeitschr. 72 (1959), 53–60. | DOI | MR | Zbl
[5] H. Min: One parameter semigroups in Lie groups. Master’s thesis at Seoul women’s university, 1995.
[6] V. S. Varadarajan: Lie Groups, Lie Algebras, and Their Representations. SpringerVerlag, New York, 1984. | MR | Zbl