Triangular stochastic matrices generated by infinitesimal elements
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 249-254 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that each element in the semigroup $S_n$ of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of $S_n$, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.
We show that each element in the semigroup $S_n$ of all $n \times n$ non-singular upper (or lower) triangular stochastic matrices is generated by the infinitesimal elements of $S_n$, which form a cone consisting of all $n \times n$ upper (or lower) triangular intensity matrices.
Classification : 15A51, 22E15, 22E99, 34A30
@article{CMJ_1999_49_2_a3,
     author = {Chon, Inheung and Min, Hyesung},
     title = {Triangular stochastic matrices generated by infinitesimal elements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {249--254},
     year = {1999},
     volume = {49},
     number = {2},
     mrnumber = {1692481},
     zbl = {0949.22021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/}
}
TY  - JOUR
AU  - Chon, Inheung
AU  - Min, Hyesung
TI  - Triangular stochastic matrices generated by infinitesimal elements
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 249
EP  - 254
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/
LA  - en
ID  - CMJ_1999_49_2_a3
ER  - 
%0 Journal Article
%A Chon, Inheung
%A Min, Hyesung
%T Triangular stochastic matrices generated by infinitesimal elements
%J Czechoslovak Mathematical Journal
%D 1999
%P 249-254
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/
%G en
%F CMJ_1999_49_2_a3
Chon, Inheung; Min, Hyesung. Triangular stochastic matrices generated by infinitesimal elements. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 249-254. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a3/

[1] I. Chon: Lie group and control theory. Ph.D.  thesis at Louisiana state university, 1988.

[2] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960. | MR

[3] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338–340. | DOI | MR | Zbl

[4] C. Loewner: A theorem on the partial order derived from a certain transformation semigroup. Math. Zeitschr. 72 (1959), 53–60. | DOI | MR | Zbl

[5] H. Min: One parameter semigroups in Lie groups. Master’s thesis at Seoul women’s university, 1995.

[6] V. S. Varadarajan: Lie Groups, Lie Algebras, and Their Representations. SpringerVerlag, New York, 1984. | MR | Zbl