The coregular property on $\gamma$-spaces
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 431-442 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54E15
@article{CMJ_1999_49_2_a17,
     author = {Andrikopoulos, A. and Stabakis, J.},
     title = {The coregular property on $\gamma$-spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {431--442},
     year = {1999},
     volume = {49},
     number = {2},
     mrnumber = {1692504},
     zbl = {0949.54031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a17/}
}
TY  - JOUR
AU  - Andrikopoulos, A.
AU  - Stabakis, J.
TI  - The coregular property on $\gamma$-spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 431
EP  - 442
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a17/
LA  - en
ID  - CMJ_1999_49_2_a17
ER  - 
%0 Journal Article
%A Andrikopoulos, A.
%A Stabakis, J.
%T The coregular property on $\gamma$-spaces
%J Czechoslovak Mathematical Journal
%D 1999
%P 431-442
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a17/
%G en
%F CMJ_1999_49_2_a17
Andrikopoulos, A.; Stabakis, J. The coregular property on $\gamma$-spaces. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 431-442. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a17/

[EL] R. Engelking and D. Lutzer: Paracompactness in ordered spaces. Fund. Math. 94 (1977), 49–58. | DOI | MR

[F1] R. Fox: Solution of the ${\gamma }$-space problem. Proc. Amer. Math. Soc. 85 (1982), 606–608. | MR | Zbl

[F2] R. Fox: A short proof of the Junnila’s quasi-metrization theorem. Proc. Amer. Math. Soc. 83 (3) (1981), 663–664. | MR

[FK] R. Fox and J. Köfner: A regular counterexample to the ${\gamma }$-space conjecture. Proc Amer. Math. Soc. 94 (1985), 502–506. | MR

[FL] P. Fletcher and W. F. Lindgren: Quasi-uniform spaces. Lectures Notes in Pure Appl. Math. 77, Marcel Dekker, New York, 1982. | MR

[Ke] J. C. Kelly: Bitopological spaces. Proc. London Math. Soc. (3) 13 (1963), 71–89. | MR | Zbl

[Ko] J. Köfner: Transitivity and the $\gamma $-space conjecture on ordered spaces. Proc. Amer Math. Soc. 81 (1981), 629–634. | MR

[Kop] R. D. Kopperman: Which topologies are quasi-metrizable. Topology and its Aplications 52 (1993), 99–107. | MR

[Ku1] H. P. Künzi: A note on Ralph Fox’s $\gamma $-space. Proc. Amer. Math. Soc. 91 (1984), 467–470. | MR

[Ku2] H. P. Künzi: Quasi-uniform spaces-Eleven years later. Proc. of Coll. on Topol, János Bolyai Math. Soc., Szekszárd, Hungary, 1993. | MR

[Ku3] H. P. Künzi: On strongly quasi-metrizable spaces. Arch. Math (Basel) 41 (1983), 57–63. | DOI

[LF] W. F. Lindgren and P. Fletcher: Locally quasi-uniform spaces with countable bases. Duke Math. J 41 (1974), 231–240. | DOI | MR

[MN] M. G Murdeshwar and S. A. Naimpally: Quasi-Uniform Topological Spaces. Noordhoff, Groningen, 1966. | MR

[W] J. Williams: Locally uniform spaces. Trans. Amer Math. Soc. 168 (1972), 435–469. | DOI | MR | Zbl