Keywords: $\alpha_3$; $\alpha_4$; $\beta_3$; $\beta_4$ spaces; $\Phi$-space; product space; sequential space; sequentially subtransverse; strongly Fréchet; transverse
@article{CMJ_1999_49_2_a16,
author = {Dolecki, S. and Nogura, T.},
title = {Two-fold theorem on {Fr\'echetness} of products},
journal = {Czechoslovak Mathematical Journal},
pages = {421--429},
year = {1999},
volume = {49},
number = {2},
mrnumber = {1692508},
zbl = {0949.54010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/}
}
Dolecki, S.; Nogura, T. Two-fold theorem on Fréchetness of products. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 421-429. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/
[1] A. V. Arhangel’skii: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. (1981), 164–200.
[2] S. Dolecki and S. Sitou: Precise bounds for sequential order of products of some Fréchet topologies. Topology Appl. (to appear). | MR
[3] E. K. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163–164. | DOI | MR | Zbl
[4] R. Engelking: General Topology. PWN Warszawa (1977). | MR | Zbl
[5] E. Michael: A quintuple quotient quest. General Topology Appl. 2 (1972), 91–138. | DOI | MR | Zbl
[6] E. Michael: A note on closed maps and compact sets. Israel J. Math. 2 (1964), 174–176. | MR | Zbl
[7] T. Nogura: Fréchetness of inverse limits and products. Topology and Appl. 20 (1985), 59–66. | DOI | MR | Zbl
[8] T. Nogura: The product of $\langle \alpha _i\rangle $-spaces. Topology and Appl. 21 (1985), 251–259. | MR
[9] J. Novák: On convergence group. Czechoslovak Math. J. 20 (1970), 357–374. | MR
[10] P. Nyikos: The Cantor tree and the Fréchet-Urysohn property. Annals N.Y. Acad. Sc. 552 (1989), 109–123. | DOI | MR | Zbl
[11] P. Nyikos: Subsets of $^\omega \omega $ and the Fréchet-Urysohn and $\alpha _i$-properties. Topology Appl. 48 (1992), 91–116. | DOI | MR | Zbl
[12] V. V Popov and D. V. Rančin: On certain strengthening of the property of Fréchet-Urysohn. Vest. Moscow Univ. 2 (1978), 75–80.
[13] Y. Tanaka: Products of sequential spaces. Proc. Amer. Math. Soc. 54 (1976), 371–375. | DOI | MR | Zbl