Two-fold theorem on Fréchetness of products
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 421-429 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.
A refined common generalization of known theorems (Arhangel’skii, Michael, Popov and Rančin) on the Fréchetness of products is proved. A new characterization, in terms of products, of strongly Fréchet topologies is provided.
Classification : 54A20, 54B10, 54D50, 54D55, 54G15
Keywords: $\alpha_3$; $\alpha_4$; $\beta_3$; $\beta_4$ spaces; $\Phi$-space; product space; sequential space; sequentially subtransverse; strongly Fréchet; transverse
@article{CMJ_1999_49_2_a16,
     author = {Dolecki, S. and Nogura, T.},
     title = {Two-fold theorem on {Fr\'echetness} of products},
     journal = {Czechoslovak Mathematical Journal},
     pages = {421--429},
     year = {1999},
     volume = {49},
     number = {2},
     mrnumber = {1692508},
     zbl = {0949.54010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/}
}
TY  - JOUR
AU  - Dolecki, S.
AU  - Nogura, T.
TI  - Two-fold theorem on Fréchetness of products
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 421
EP  - 429
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/
LA  - en
ID  - CMJ_1999_49_2_a16
ER  - 
%0 Journal Article
%A Dolecki, S.
%A Nogura, T.
%T Two-fold theorem on Fréchetness of products
%J Czechoslovak Mathematical Journal
%D 1999
%P 421-429
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/
%G en
%F CMJ_1999_49_2_a16
Dolecki, S.; Nogura, T. Two-fold theorem on Fréchetness of products. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 421-429. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a16/

[1] A. V. Arhangel’skii: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. (1981), 164–200.

[2] S. Dolecki and S. Sitou: Precise bounds for sequential order of products of some Fréchet topologies. Topology Appl. (to appear). | MR

[3] E. K. van Douwen: The product of a Fréchet space and a metrizable space. Topology Appl. 47 (1992), 163–164. | DOI | MR | Zbl

[4] R. Engelking: General Topology. PWN Warszawa (1977). | MR | Zbl

[5] E. Michael: A quintuple quotient quest. General Topology Appl. 2 (1972), 91–138. | DOI | MR | Zbl

[6] E. Michael: A note on closed maps and compact sets. Israel J. Math. 2 (1964), 174–176. | MR | Zbl

[7] T. Nogura: Fréchetness of inverse limits and products. Topology and Appl. 20 (1985), 59–66. | DOI | MR | Zbl

[8] T. Nogura: The product of $\langle \alpha _i\rangle $-spaces. Topology and Appl. 21 (1985), 251–259. | MR

[9] J. Novák: On convergence group. Czechoslovak Math. J. 20 (1970), 357–374. | MR

[10] P. Nyikos: The Cantor tree and the Fréchet-Urysohn property. Annals N.Y. Acad. Sc. 552 (1989), 109–123. | DOI | MR | Zbl

[11] P. Nyikos: Subsets of $^\omega \omega $ and the Fréchet-Urysohn and $\alpha _i$-properties. Topology Appl. 48 (1992), 91–116. | DOI | MR | Zbl

[12] V. V  Popov and D. V. Rančin: On certain strengthening of the property of Fréchet-Urysohn. Vest. Moscow Univ. 2 (1978), 75–80.

[13] Y. Tanaka: Products of sequential spaces. Proc. Amer. Math. Soc. 54 (1976), 371–375. | DOI | MR | Zbl