Geometric properties of a sequence of standard minimal immersions between spheres
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 401-414 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 53C22, 53C30, 53C42
@article{CMJ_1999_49_2_a14,
     author = {Gasparini, Ida Cattaneo},
     title = {Geometric properties of a sequence of standard minimal immersions between spheres},
     journal = {Czechoslovak Mathematical Journal},
     pages = {401--414},
     year = {1999},
     volume = {49},
     number = {2},
     mrnumber = {1692516},
     zbl = {0974.53043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a14/}
}
TY  - JOUR
AU  - Gasparini, Ida Cattaneo
TI  - Geometric properties of a sequence of standard minimal immersions between spheres
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 401
EP  - 414
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a14/
LA  - en
ID  - CMJ_1999_49_2_a14
ER  - 
%0 Journal Article
%A Gasparini, Ida Cattaneo
%T Geometric properties of a sequence of standard minimal immersions between spheres
%J Czechoslovak Mathematical Journal
%D 1999
%P 401-414
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a14/
%G en
%F CMJ_1999_49_2_a14
Gasparini, Ida Cattaneo. Geometric properties of a sequence of standard minimal immersions between spheres. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 401-414. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a14/

[B] M. Berger, P. Gauduchon, E. Mazet: Le spèctre d’une variètè Riemannienne. Lecture Notes in Math. 194, Springer-Verlag, 1971. | MR

[Be] A.L. Besse: Manifolds all of whose geodesics are closed. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 93, Springer-Verlag, 1978. | MR | Zbl

[C] I. Cattaneo Gasparini: Some remarks on the second variation formula for the area. Annals of Global Analysis and Geometry 11 (1993), 221–235. | MR | Zbl

[Ca] E. Calabi: Minimal immersions of surfaces in Euclidean spheres. J. Differential Geom. 1 (1967), 111–125. | DOI | MR | Zbl

[Car] A. Carfagna d’Andrea: Immersions with parallel higher fundamental forms. Beiträge zur Algebra und Geometrie 37 (1996), 75–86. | MR

[C.S] S. Console, A. Sanini: Submanifolds with conformal second fundamental form and isotropic immersions. Rivista di Matematica Univ. Parma (1993). | MR

[C.dC.K] S.S. Chern, M. do Carmo, S. Kobayashi: On minimal submanifolds of a sphere with second fundamental form of constant length. Funct. Analysis and Related Fields, Springer, New-York, 1970, pp. 59–75. | MR

[Che] B.Y. Chen: Geometry of Submanifolds. Marcel Decker, 1973. | MR | Zbl

[C.R] I. Cattaneo Gasparini, G. Romani: Normal and osculating maps for submanifolds of $R^n$. Proc. Roy. Soc. Edinburg, Sect. A 114 (1990), 39–55. | DOI | MR

[d-W$_1$] M. do Carmo, N. Wallach: Representation of compact groups and minimal immersions into spheres. J. Differential Geom. 4 (1970), 91–104. | DOI | MR

[d-W$_2$] M. do Carmo, N. Wallach: Minimal immersions of spheres into spheres. Ann. of Math. (2) 93 (1971), 43–62. | DOI | MR

[De-Z] D. De Turck, W. Ziller: Minimal immersions of spherical space forms in spheres. Comment. Math. Helvetici 67 (1992), 428–438. | DOI

[E-R] J. Eells and A. Ratto: Harmonic maps and minimal immersions with symmetries. Ann. of Math. Studies 130 (1993), Princeton Univ. Press. | MR

[E.S] J. Eells and A. Sampson: Harmonic mappings of Riemannian manifolds. American J. Math. 86 (1964), 109–160. | DOI | MR

[H] W.Y. Hsiang: On compact homogeneous minimal submanifolds. Proc. Nat. Acad. Sci. USA 56 (1966), 5–6. | DOI | MR

[K.N] S. Kobayashi and K. Nomizu: Foundations of Differential Geometry, Vol. I and II. Interscience, New York, 1963 and 1969. | MR

[K] O. Kowalski: Generalized symmetric spaces. Lecture Notes in Math. 805, Springer-Verlag, 1980. | MR | Zbl

[L] H.B. Lawson Jr.: Lectures on minimal submanifolds, Vol I. Publish or Perisch, Univ. of California, Berkeley, 1980. | MR | Zbl

[Li] A. Lichnerowicz: Gèomètrie des groupes de transformations. Dunod, Paris, 1958. | MR | Zbl

[Sa] K. Sakamoto: Helical immersions into unit sphere. Math. Ann. 261 (1982), 63–80. | DOI | MR

[Si] J. Simons: Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968), 62–105. | DOI | MR | Zbl

[Sp.] M. Spivak: A comprehensive introduction to differential geometry. Publish or Perish, (1979). | Zbl

[T] T. Takahashi: Minimal immersion of Riemannian manifolds. J. Math. Soc. Japan 18 (1966), 380–385. | DOI | MR

[Th] G. Thorbergsson: Isoparametric submanifold and their buildings. Ann. Math. 133 (1991), 493–498. | MR

[To] G. Toth: Harmonic and Minimal Maps with Applications in Geometry and Physics. Ellis Horwood Series, 1984. | MR | Zbl

[Ts] K. Tsukada: Isotropic minimal immersions of spheres into spheres. J. Math. Soc. Japan 35 (1983), 355–379. | DOI | MR | Zbl

[V] N. Vilenkin: Special Functions and the Theory of Groups Representation. Transl. Math. Monograph, Vol. 22, American Math. Soc. Providence, 1968. | MR

[Vi] J. Vilms: Totally geodesic maps. J. Diff. Geom. 4 (1970), 73–79. | DOI | MR | Zbl

[W,H] T.J. Willmore and N. Hitchin: Global Riemannian Geometry. Ellis Horwood Series, 1989.