Unique solvability of a linear problem with perturbed periodic boundary values
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 351-362
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We investigate the problem with perturbed periodic boundary values \[ \left\rbrace \begin{array}{ll}y^{\prime \prime \prime }(x) + a_2(x) y^{\prime \prime }(x) + a_1(x) y^{\prime }(x) + a_0(x) y(x) = f(x) , y^{(i)}(T) = c y^{(i)}(0), \ i = 0, 1, 2; \ 0 c 1 \end{array}\right.\] with $a_2, a_1, a_0 \in C[0,T]$ for some arbitrary positive real number $T$, by transforming the problem into an integral equation with the aid of a piecewise polynomial and utilizing the Fredholm alternative theorem to obtain a condition on the uniform norms of the coefficients $a_2$, $a_1$ and $a_0$ which guarantees unique solvability of the problem. Besides having theoretical value, this problem has also important applications since decay is a phenomenon that all physical signals and quantities (amplitude, velocity, acceleration, curvature, etc.) experience.
We investigate the problem with perturbed periodic boundary values \[ \left\rbrace \begin{array}{ll}y^{\prime \prime \prime }(x) + a_2(x) y^{\prime \prime }(x) + a_1(x) y^{\prime }(x) + a_0(x) y(x) = f(x) , y^{(i)}(T) = c y^{(i)}(0), \ i = 0, 1, 2; \ 0 c 1 \end{array}\right.\] with $a_2, a_1, a_0 \in C[0,T]$ for some arbitrary positive real number $T$, by transforming the problem into an integral equation with the aid of a piecewise polynomial and utilizing the Fredholm alternative theorem to obtain a condition on the uniform norms of the coefficients $a_2$, $a_1$ and $a_0$ which guarantees unique solvability of the problem. Besides having theoretical value, this problem has also important applications since decay is a phenomenon that all physical signals and quantities (amplitude, velocity, acceleration, curvature, etc.) experience.
Classification :
34B05, 34B15, 34C10, 45B05
Keywords: Ordinary differential equations; integral equations; periodic boundary value problems
Keywords: Ordinary differential equations; integral equations; periodic boundary value problems
@article{CMJ_1999_49_2_a11,
author = {Mehri, Bahman and Nojumi, Mohammad H.},
title = {Unique solvability of a linear problem with perturbed periodic boundary values},
journal = {Czechoslovak Mathematical Journal},
pages = {351--362},
year = {1999},
volume = {49},
number = {2},
mrnumber = {1692528},
zbl = {0955.34007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a11/}
}
TY - JOUR AU - Mehri, Bahman AU - Nojumi, Mohammad H. TI - Unique solvability of a linear problem with perturbed periodic boundary values JO - Czechoslovak Mathematical Journal PY - 1999 SP - 351 EP - 362 VL - 49 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a11/ LA - en ID - CMJ_1999_49_2_a11 ER -
Mehri, Bahman; Nojumi, Mohammad H. Unique solvability of a linear problem with perturbed periodic boundary values. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 2, pp. 351-362. http://geodesic.mathdoc.fr/item/CMJ_1999_49_2_a11/
[1] H. Brezis: Analyse Fonctionnelle, Théorie et Applications. Masson, Paris, 1983. | MR | Zbl
[2] R. Brown: A Topological Introduction to Nonlinear Analysis. Birkhäuser, Boston, 1993. | MR | Zbl
[3] J. A. Cochran: Analysis of Linear Integral Equations. McGraw Hill, New York, 1972. | MR | Zbl
[4] R. Kress: Linear Integral Equations. Springer-Verlag, New York, 1989. | MR | Zbl
[5] M. Reed, and B. Simon: Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis. Academic Press, Orlando, Florida, 1980. | MR