$L^p$-discrepancy and statistical independence of sequences
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
We characterize statistical independence of sequences by the $L^p$-discrepancy and the Wiener $L^p$-discrepancy. Furthermore, we find asymptotic information on the distribution of the $L^2$-discrepancy of sequences.
Classification : 11K06, 11K31, 11K38
Keywords: sequences; statistical independence; discrepancy; distribution functions
@article{CMJ_1999_49_1_a9,
     author = {Grabner, Peter J. and Strauch, Oto and Tichy, Robert F.},
     title = {$L^p$-discrepancy and statistical independence of sequences},
     journal = {Czechoslovak Mathematical Journal},
     pages = {97--110},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676837},
     zbl = {1074.11509},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/}
}
TY  - JOUR
AU  - Grabner, Peter J.
AU  - Strauch, Oto
AU  - Tichy, Robert F.
TI  - $L^p$-discrepancy and statistical independence of sequences
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 97
EP  - 110
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/
LA  - en
ID  - CMJ_1999_49_1_a9
ER  - 
%0 Journal Article
%A Grabner, Peter J.
%A Strauch, Oto
%A Tichy, Robert F.
%T $L^p$-discrepancy and statistical independence of sequences
%J Czechoslovak Mathematical Journal
%D 1999
%P 97-110
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/
%G en
%F CMJ_1999_49_1_a9
Grabner, Peter J.; Strauch, Oto; Tichy, Robert F. $L^p$-discrepancy and statistical independence of sequences. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/

[1] Cameron, R. H., Martin, W. T.: Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations. Bull. Amer. Math. Soc. 51 (1945), 73–90. | DOI | MR

[2] Doetsch, G.: Handbuch über die Laplace Transformation, II. Birkhäuser Verlag, Basel, 1955. | MR

[3] Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 23 (1952), 277–281. | DOI | MR | Zbl

[4] Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20 (1949), 393–403. | DOI | MR | Zbl

[5] Grabner, P. J., Tichy, R. F.: Remarks on statistical independence of sequences. Math. Slovaca 44 (1994), 91–94. | MR

[6] Grabner, P. J., Strauch, O., Tichy, R. F.: Maldistribution in higher dimensions. Mathematica Pannonica 8 (1997), 215–223. | MR

[7] Kac, M.: Probability and related topics in physical sciences. Lectures in Applied Math., Proceedings of a Summer Seminar in Boulder, Col. 1957, Interscience Publishers, London, New York, 1959. | MR | Zbl

[8] Kolmogoroff, A.: Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933), 83–91. | Zbl

[9] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974. | MR

[10] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin, Heidelberg, New York, 1966. | MR

[11] Rauzy, G.: Propriétés statistiques de suites arithmétiques. Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976. | MR | Zbl

[12] Ray, D.: On spectra of second-order differential operators. Trans. Amer. Math. Soc. 77 (1954), 299–321. | DOI | MR | Zbl

[13] Strauch, O.: $L^2$ discrepancy. Math. Slovaca 44 (1994), 601–632. | MR

[14] Strauch, O.: On the set of all distribution functions of a sequence. Proceedings of the conference on analytic and elementary number theory: a satellite conference of the European Congress on Mathematics ’96, Vienna, July 18–20, 1996. Dedicated to the honour of the 80th birthday of E. Hlawka, W. G. Nowak et al. (eds.), Universität Wien, 1996, pp. 214–229.

[15] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford University Press, 1946. | MR | Zbl

[16] Winkler, R.: On the distribution behaviour of sequences. Math. Nachrichten 186 (1997) (to appear), 303–312. | DOI | MR