Keywords: sequences; statistical independence; discrepancy; distribution functions
@article{CMJ_1999_49_1_a9,
author = {Grabner, Peter J. and Strauch, Oto and Tichy, Robert F.},
title = {$L^p$-discrepancy and statistical independence of sequences},
journal = {Czechoslovak Mathematical Journal},
pages = {97--110},
year = {1999},
volume = {49},
number = {1},
mrnumber = {1676837},
zbl = {1074.11509},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/}
}
TY - JOUR AU - Grabner, Peter J. AU - Strauch, Oto AU - Tichy, Robert F. TI - $L^p$-discrepancy and statistical independence of sequences JO - Czechoslovak Mathematical Journal PY - 1999 SP - 97 EP - 110 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/ LA - en ID - CMJ_1999_49_1_a9 ER -
Grabner, Peter J.; Strauch, Oto; Tichy, Robert F. $L^p$-discrepancy and statistical independence of sequences. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 97-110. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a9/
[1] Cameron, R. H., Martin, W. T.: Evaluation of various Wiener integrals by use of certain Sturm-Liouville differential equations. Bull. Amer. Math. Soc. 51 (1945), 73–90. | DOI | MR
[2] Doetsch, G.: Handbuch über die Laplace Transformation, II. Birkhäuser Verlag, Basel, 1955. | MR
[3] Donsker, M.D.: Justification and extension of Doob’s heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 23 (1952), 277–281. | DOI | MR | Zbl
[4] Doob, J.L.: Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20 (1949), 393–403. | DOI | MR | Zbl
[5] Grabner, P. J., Tichy, R. F.: Remarks on statistical independence of sequences. Math. Slovaca 44 (1994), 91–94. | MR
[6] Grabner, P. J., Strauch, O., Tichy, R. F.: Maldistribution in higher dimensions. Mathematica Pannonica 8 (1997), 215–223. | MR
[7] Kac, M.: Probability and related topics in physical sciences. Lectures in Applied Math., Proceedings of a Summer Seminar in Boulder, Col. 1957, Interscience Publishers, London, New York, 1959. | MR | Zbl
[8] Kolmogoroff, A.: Sulla determinazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933), 83–91. | Zbl
[9] Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974. | MR
[10] Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin, Heidelberg, New York, 1966. | MR
[11] Rauzy, G.: Propriétés statistiques de suites arithmétiques. Le Mathématicien, No. 15, Collection SUP, Presses Universitaires de France, Paris, 1976. | MR | Zbl
[12] Ray, D.: On spectra of second-order differential operators. Trans. Amer. Math. Soc. 77 (1954), 299–321. | DOI | MR | Zbl
[13] Strauch, O.: $L^2$ discrepancy. Math. Slovaca 44 (1994), 601–632. | MR
[14] Strauch, O.: On the set of all distribution functions of a sequence. Proceedings of the conference on analytic and elementary number theory: a satellite conference of the European Congress on Mathematics ’96, Vienna, July 18–20, 1996. Dedicated to the honour of the 80th birthday of E. Hlawka, W. G. Nowak et al. (eds.), Universität Wien, 1996, pp. 214–229.
[15] Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Oxford University Press, 1946. | MR | Zbl
[16] Winkler, R.: On the distribution behaviour of sequences. Math. Nachrichten 186 (1997) (to appear), 303–312. | DOI | MR