An explicit description of the set of all normal bases generators of a finite field
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 81-96 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11T30, 12E20
@article{CMJ_1999_49_1_a8,
     author = {Nemoga, Karol and Schwarz, \v{S}tefan},
     title = {An explicit description of the set of all normal bases generators of a finite field},
     journal = {Czechoslovak Mathematical Journal},
     pages = {81--96},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1670866},
     zbl = {1074.12500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a8/}
}
TY  - JOUR
AU  - Nemoga, Karol
AU  - Schwarz, Štefan
TI  - An explicit description of the set of all normal bases generators of a finite field
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 81
EP  - 96
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a8/
LA  - en
ID  - CMJ_1999_49_1_a8
ER  - 
%0 Journal Article
%A Nemoga, Karol
%A Schwarz, Štefan
%T An explicit description of the set of all normal bases generators of a finite field
%J Czechoslovak Mathematical Journal
%D 1999
%P 81-96
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a8/
%G en
%F CMJ_1999_49_1_a8
Nemoga, Karol; Schwarz, Štefan. An explicit description of the set of all normal bases generators of a finite field. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a8/

[1] Fricke, R.: Lehrbuch der Algebra, Vol 3. Branschweig, 1928.

[2] Lidl, R.; Niedereiter, H.: Finite Fields. Addison-Wesley Publ. Comp., 1983. | MR

[3] Jungnickel, D.: Finite Fields, Structure and Arithmetics. Wissenschaftsverlag, Mannheim, 1993. | MR | Zbl

[4] Menezes, A.; Blake, I.; Gao, S.; Mullin, R.; Vanstone, S.; Yaghoobian, T.: Applications of Finite Fields. Kluwer, 1992.

[5] Nemoga, K.: Algebraic theory of pseudocyclic codes, unpublished Ph. D. thesis. Math. Inst. of the Slovak Acad. of Sciences, Bratislava (1988).

[6] Schwarz, Š.: The role of semigroups in the elementary theory of numbers. Math. Slovaca 31 (1981), 369–395. | MR | Zbl

[7] Schwarz, Š.: Irreducible polynomials over finite fields with linearly independent roots. Math. Slovaca 38 (1988), 147–158. | MR | Zbl