On an extension of Fekete’s lemma
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
We show that if a real $n \times n$ non-singular matrix ($n \ge m$) has all its minors of order $m-1$ non-negative and has all its minors of order $m$ which come from consecutive rows non-negative, then all $m$th order minors are non-negative, which may be considered an extension of Fekete’s lemma.
Classification : 15A15
@article{CMJ_1999_49_1_a6,
     author = {Chon, Inheung},
     title = {On an extension of {Fekete{\textquoteright}s} lemma},
     journal = {Czechoslovak Mathematical Journal},
     pages = {63--66},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676845},
     zbl = {0954.15005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a6/}
}
TY  - JOUR
AU  - Chon, Inheung
TI  - On an extension of Fekete’s lemma
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 63
EP  - 66
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a6/
LA  - en
ID  - CMJ_1999_49_1_a6
ER  - 
%0 Journal Article
%A Chon, Inheung
%T On an extension of Fekete’s lemma
%J Czechoslovak Mathematical Journal
%D 1999
%P 63-66
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a6/
%G en
%F CMJ_1999_49_1_a6
Chon, Inheung. On an extension of Fekete’s lemma. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 63-66. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a6/

[1] I. Chon: Lie group and control theory. Ph.D. Thesis, Louisiana State University, 1988.

[2] M. Fekete: Ueber ein Problem von Laguerre. Rendiconti del Circolo Matematico di Palermo 34 (1912), 92–93.

[3] F. R. Gantmacher: The Theory of Matrices vol. 1 and vol. 2. Chelsea Publ. Comp., New York, 1960. | MR

[4] S. Karlin: Total Positivity vol. 1. Stanford University Press, 1968. | MR

[5] C. Loewner: On totally positive matrices. Math. Zeitschr. 63 (1955), 338–340. | DOI | MR | Zbl

[6] G. Pólya and G. Szegö: Aufgaben and Lehrsätze aus der Analysis vol. 2. Springer-Velag, 1964.

[7] A. M. Whitney: A reduction theorem for totally positive matrices. J. d’Analyse Math. Jerusalem 2 (1952), 88–92. | DOI | MR | Zbl