Oscillations of certain functional differential equations
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 45-52 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations \[ (-1)^{m+1}\frac{d^my_i(t)}{dt^m} + \sum ^n_{j=1} q_{ij} y_j(t-h_{jj})=0, \quad m \ge 1, \ i=1,2,\ldots ,n, \] to be oscillatory, where $q_{ij} \varepsilon (-\infty ,\infty )$, $h_{jj} \in (0,\infty )$, $i,j = 1,2,\ldots ,n$. Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations \[ (-1)^{m+1} \frac{d^m}{dt^m} (y_i(t)+cy_i(t-g)) + \sum ^n_{j=1} q_{ij} y_j (t-h)=0, \] where $c$, $g$ and $h$ are real constants and $i=1,2,\ldots ,n$.
Sufficient conditions are presented for all bounded solutions of the linear system of delay differential equations \[ (-1)^{m+1}\frac{d^my_i(t)}{dt^m} + \sum ^n_{j=1} q_{ij} y_j(t-h_{jj})=0, \quad m \ge 1, \ i=1,2,\ldots ,n, \] to be oscillatory, where $q_{ij} \varepsilon (-\infty ,\infty )$, $h_{jj} \in (0,\infty )$, $i,j = 1,2,\ldots ,n$. Also, we study the oscillatory behavior of all bounded solutions of the linear system of neutral differential equations \[ (-1)^{m+1} \frac{d^m}{dt^m} (y_i(t)+cy_i(t-g)) + \sum ^n_{j=1} q_{ij} y_j (t-h)=0, \] where $c$, $g$ and $h$ are real constants and $i=1,2,\ldots ,n$.
Classification : 34K11, 34K40
@article{CMJ_1999_49_1_a4,
     author = {Grace, S. R.},
     title = {Oscillations of certain functional differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {45--52},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676690},
     zbl = {0955.34051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a4/}
}
TY  - JOUR
AU  - Grace, S. R.
TI  - Oscillations of certain functional differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 45
EP  - 52
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a4/
LA  - en
ID  - CMJ_1999_49_1_a4
ER  - 
%0 Journal Article
%A Grace, S. R.
%T Oscillations of certain functional differential equations
%J Czechoslovak Mathematical Journal
%D 1999
%P 45-52
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a4/
%G en
%F CMJ_1999_49_1_a4
Grace, S. R. Oscillations of certain functional differential equations. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 45-52. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a4/

[1] K. Gopalsamy: Oscillatory properties of systems of first order linear delay differential inequalities. Pacific J. Math. 128 (1987), 299–305. | DOI | MR | Zbl

[2] K. Gopalsamy and G. Ladas: Oscillations of delay differential equations. J. Austral Math. Soc. Ser. B. 32 (1991), 377–381. | DOI | MR

[3] I. Györi and G. Ladas: Oscillation Theory of Delay Differential Equations with Applications. Oxford University Press, Oxford, 1991. | MR

[4] I. T. Kiguradze: On the oscillation of solutions of the equation ${}^mu/t^m+a(t) |u|^n u=0$. Mat. Sb. 65 (1964), 172–187. (Russian) | MR | Zbl

[5] G. Ladas and I. P. Stavroulakis: On delay differential inequalities of higher order. Canad. Math. Bull. 25 (1982), 348–354. | DOI | MR

[6] Ch. G. Philos: On the existence of the nonoscillatory solutions tending to zero at $\infty $ for differential equations with positive delays. Arch. Math. 36 (1981), 168–178. | DOI | MR