A generalisation of a theorem of Koldunov with an elementary proof
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 187-190 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We generalize a Theorem of Koldunov [2] and prove that a disjointness proserving quasi-linear operator between Resz spaces has the Hammerstein property.
We generalize a Theorem of Koldunov [2] and prove that a disjointness proserving quasi-linear operator between Resz spaces has the Hammerstein property.
Classification : 46A40, 47B60, 47H07, 47H30
Keywords: Riesz spaces (vector lattices); Hammerstein property and disjointness preserving operators
@article{CMJ_1999_49_1_a17,
     author = {Ercan, Zafer},
     title = {A generalisation of a theorem of {Koldunov} with an elementary proof},
     journal = {Czechoslovak Mathematical Journal},
     pages = {187--190},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676793},
     zbl = {0954.46003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a17/}
}
TY  - JOUR
AU  - Ercan, Zafer
TI  - A generalisation of a theorem of Koldunov with an elementary proof
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 187
EP  - 190
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a17/
LA  - en
ID  - CMJ_1999_49_1_a17
ER  - 
%0 Journal Article
%A Ercan, Zafer
%T A generalisation of a theorem of Koldunov with an elementary proof
%J Czechoslovak Mathematical Journal
%D 1999
%P 187-190
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a17/
%G en
%F CMJ_1999_49_1_a17
Ercan, Zafer. A generalisation of a theorem of Koldunov with an elementary proof. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 187-190. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a17/

[1] Z. Ercan and A. W. Wickstead: Towards a theory of non-linear orthomorphisms. Functional Analysis and Economic Theory, Springer, 1998, pp. 65–73. | MR

[2] A. V. Koldunov: Hammerstein operators preserving disjointness. Proc. Amer. Math. Soc. 4 (1995), 1083–1095. | MR | Zbl

[3] W. A. J. Luxemburg and A. C. Zaanen: Riesz Spaces  1. North-Holland, Amsterdam, 1971.

[4] P. Meyer-Nieberg: Banach Lattices. Springer Universitest., Berlin, 1992. | MR