Rings of maps: sequential convergence and completion
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 111-118 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The ring $B(R)$ of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring $C(R)$ of all continuous functions and, similarly, the ring $\mathbb{B}$ of all Borel measurable subsets of $R$ is a sequential ring completion of the subring $\mathbb{B}_0$ of all finite unions of half-open intervals; the two completions are not categorical. We study $\mathcal L_0^*$-rings of maps and develop a completion theory covering the two examples. In particular, the $\sigma $-fields of sets form an epireflective subcategory of the category of fields of sets and, for each field of sets $\mathbb{A}$, the generated $\sigma $-field $\sigma (\mathbb{A})$ yields its epireflection. Via zero-rings the theory can be applied to completions of special commutative $\mathcal L_0^*$-groups.
The ring $B(R)$ of all real-valued measurable functions, carrying the pointwise convergence, is a sequential ring completion of the subring $C(R)$ of all continuous functions and, similarly, the ring $\mathbb{B}$ of all Borel measurable subsets of $R$ is a sequential ring completion of the subring $\mathbb{B}_0$ of all finite unions of half-open intervals; the two completions are not categorical. We study $\mathcal L_0^*$-rings of maps and develop a completion theory covering the two examples. In particular, the $\sigma $-fields of sets form an epireflective subcategory of the category of fields of sets and, for each field of sets $\mathbb{A}$, the generated $\sigma $-field $\sigma (\mathbb{A})$ yields its epireflection. Via zero-rings the theory can be applied to completions of special commutative $\mathcal L_0^*$-groups.
Classification : 54A20, 54B30, 54H13, 60A99
Keywords: Rings of sets; completion of sequential convergence rings; $Z(2)$-generation; $Z(2)$-completion; $\sigma $-rings of maps; epireflection; fields of events; foundation of probability
@article{CMJ_1999_49_1_a10,
     author = {Fri\v{c}, Roman},
     title = {Rings of maps: sequential convergence and completion},
     journal = {Czechoslovak Mathematical Journal},
     pages = {111--118},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676833},
     zbl = {0949.54003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a10/}
}
TY  - JOUR
AU  - Frič, Roman
TI  - Rings of maps: sequential convergence and completion
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 111
EP  - 118
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a10/
LA  - en
ID  - CMJ_1999_49_1_a10
ER  - 
%0 Journal Article
%A Frič, Roman
%T Rings of maps: sequential convergence and completion
%J Czechoslovak Mathematical Journal
%D 1999
%P 111-118
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a10/
%G en
%F CMJ_1999_49_1_a10
Frič, Roman. Rings of maps: sequential convergence and completion. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 111-118. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a10/

[BKF] Borsík, J. and Frič, R.: Pointwise convergence fails to be strict. Czechoslovak Math. J. 48(123) (1998), 313–320. | DOI | MR

[FCA] Frič, R.: On continuous characters of Borel sets. In Proceedings of the Conference on Convergence Spaces (Univ. Nevada, Reno, Nev., 1976), Dept. Math. Univ. Nevada, Reno, Nev., 1976, pp. 35–44. | MR

[FCB] Frič, R.: On completions of rationals. In Recent Developments of General Topology and its Applications, Math. Research No. 67, Akademie-Verlag, Berlin, 1992, pp. 124–129. | MR

[FKO] Frič, R. and Koutník, V.: Completions for subcategories of convergence rings. In Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics, World Scientific Publishing Co., Singapore, 1989, pp. 195–207. | MR

[FKT] Frič, R. and Koutník, V.: Sequential convergence spaces: iteration, extension, completion, enlargement. In Recent Progress in General Topology, North Holland, Amsterdam, 1992, pp. 199–213. | MR

[FMR] Frič, R., McKennon, K. and Richardson, G. D.: Sequential convergence in $C(X)$. In Convergence Structures and Application to Analysis (Frankfurt/Oder, 1978), Abh. Akad. Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1979, Nr. 4N, Akademie-Verlag, Berlin, 1980, pp. 57–65. | MR

[FPA] Frič, R. and Piatka, Ľ.: Continuous homomorphisms in set algebras. Práce Štud. Vys. Šk. Doprav. Žiline Sér. Mat.-fyz., 2 (1979), 13–20. (Slovak) | MR

[FZE] Frič, R. and Zanolin, F.: Coarse sequential convergence in groups, etc. Czechoslovak Math. J. 40 (115) (1990), 459–467. | MR

[FZS] Frič, R. and Zanolin, F.: Strict completions of $L _0^*$-groups. Czechoslovak Math. J. 42 (117) (1992), 589–598. | MR

[HES] Herrlich, H. and Strecker, G. E.: Category Theory. 2nd edition, Heldermann Verlag, Berlin, 1976. | MR

[ITH] Isbell, J. R. and Thomas Jr., S.: Mazur’s theorem on sequentially continuous functionals. Proc. Amer. Math. Soc. 14 (1963), 644–647. | MR

[LAC] Laczkovich, M.: Baire 1 functions. Real Analysis Exchange 9 (1983/84), 15–28. | DOI

[NOE] Novák, J.: Über die eindeutigen stetigen Erweiterungen stetiger Funktionen. Czechoslovak Math. J. 8 (1958), 344–355. | MR

[NOV] Novák, J.: On completions of convergence commutative groups. In General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. | MR

[PAU] Paulík, L.: Strictness of $L_0$-ring completions. Tatra Mountains Math. Publ. 5 (1995), 169–175. | MR