Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 1-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMJ_1999_49_1_a0,
author = {Pal, Mukul and Nath, Mrityunjoy},
title = {Certain transformations $T_\omega$ and {Lebesgue} measurable sets of positive measure},
journal = {Czechoslovak Mathematical Journal},
pages = {1--12},
year = {1999},
volume = {49},
number = {1},
mrnumber = {1676706},
zbl = {0953.28002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/}
}
TY - JOUR AU - Pal, Mukul AU - Nath, Mrityunjoy TI - Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure JO - Czechoslovak Mathematical Journal PY - 1999 SP - 1 EP - 12 VL - 49 IS - 1 UR - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/ LA - en ID - CMJ_1999_49_1_a0 ER -
Pal, Mukul; Nath, Mrityunjoy. Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/
[1] T. Neubrunn, T. Šalát: Distance sets, ratio sets and certain transformations of sets of real numbers. Čas. Pěst. Mat. 94 (1969), 381–393. | MR
[2] M. Pal: On certain transformations of Sets in $R_N$. Acta F.R.N. Univ. Comen. Mathematica XXIX, 1974, pp. 43–58. | MR | Zbl
[3] K.C. Ray: On two theorems of S. Kurepa. Glasnik Mat-Fiz. 19 (1964), 207–210. | MR | Zbl
[4] N.G. Saha, K.C. Ray: On sets under certain transformations in $R_N$. Publ. Inst. Math. 22(36) (1977), 237–244. | MR
[5] R.L. Wheeden, A. Zygmund: Measure and Integration. Marcel Dekker, Inc., New York, 1977, pp. 45. | MR