Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure
Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A05
@article{CMJ_1999_49_1_a0,
     author = {Pal, Mukul and Nath, Mrityunjoy},
     title = {Certain transformations $T_\omega$ and {Lebesgue} measurable sets of positive measure},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--12},
     year = {1999},
     volume = {49},
     number = {1},
     mrnumber = {1676706},
     zbl = {0953.28002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/}
}
TY  - JOUR
AU  - Pal, Mukul
AU  - Nath, Mrityunjoy
TI  - Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure
JO  - Czechoslovak Mathematical Journal
PY  - 1999
SP  - 1
EP  - 12
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/
LA  - en
ID  - CMJ_1999_49_1_a0
ER  - 
%0 Journal Article
%A Pal, Mukul
%A Nath, Mrityunjoy
%T Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure
%J Czechoslovak Mathematical Journal
%D 1999
%P 1-12
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/
%G en
%F CMJ_1999_49_1_a0
Pal, Mukul; Nath, Mrityunjoy. Certain transformations $T_\omega$ and Lebesgue measurable sets of positive measure. Czechoslovak Mathematical Journal, Tome 49 (1999) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/CMJ_1999_49_1_a0/

[1] T. Neubrunn, T. Šalát: Distance sets, ratio sets and certain transformations of sets of real numbers. Čas. Pěst. Mat. 94 (1969), 381–393. | MR

[2] M. Pal: On certain transformations of Sets in $R_N$. Acta F.R.N. Univ. Comen. Mathematica XXIX, 1974, pp. 43–58. | MR | Zbl

[3] K.C. Ray: On two theorems of S. Kurepa. Glasnik Mat-Fiz. 19 (1964), 207–210. | MR | Zbl

[4] N.G. Saha, K.C. Ray: On sets under certain transformations in $R_N$. Publ. Inst. Math. 22(36) (1977), 237–244. | MR

[5] R.L. Wheeden, A. Zygmund: Measure and Integration. Marcel Dekker, Inc., New York, 1977, pp. 45. | MR