@article{CMJ_1998_48_4_a6,
author = {Kajiwara, Joji and Shon, Kwang Ho and Tsuji, Miki},
title = {Localization of global existence of holomorphic solutions of holomorphic differential equations with infinite dimensional parameter},
journal = {Czechoslovak Mathematical Journal},
pages = {687--700},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658241},
zbl = {0956.32016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a6/}
}
TY - JOUR AU - Kajiwara, Joji AU - Shon, Kwang Ho AU - Tsuji, Miki TI - Localization of global existence of holomorphic solutions of holomorphic differential equations with infinite dimensional parameter JO - Czechoslovak Mathematical Journal PY - 1998 SP - 687 EP - 700 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a6/ LA - en ID - CMJ_1998_48_4_a6 ER -
%0 Journal Article %A Kajiwara, Joji %A Shon, Kwang Ho %A Tsuji, Miki %T Localization of global existence of holomorphic solutions of holomorphic differential equations with infinite dimensional parameter %J Czechoslovak Mathematical Journal %D 1998 %P 687-700 %V 48 %N 4 %U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a6/ %G en %F CMJ_1998_48_4_a6
Kajiwara, Joji; Shon, Kwang Ho; Tsuji, Miki. Localization of global existence of holomorphic solutions of holomorphic differential equations with infinite dimensional parameter. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 687-700. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a6/
[1] H. Cartan: Idéaux de fonctions analytiques de $n$ complexes variables. Bull. Soc. Math. France. 78 (1950), 28–64. | MR
[2] H. Cartan: Séminaire E.N.S. École Normare Supérieur, Paris, 1951/1952.
[3] G. Coeuré: L’équation $\overline{\partial }u=F$ en dimension infinite. université Lille Publ. Int. 131, 1968, pp. 6–9.
[4] J. Colombeau and B. Perri: The $\overline{\partial }$-equation in D.F.N. spaces. J. Math. Anal. Appl. 78-2 (1980), 466–87. | MR
[5] J. Colombeau and B. Perri: L’équation $\overline{\partial }$ dans les ouverts pseudo-convexes des espaces D.F.N. Bull. Soc. Math. France. 110 (1982), 15–26. | DOI | MR
[6] S. Dineen: Sheaves of holomorphic functions on infinite dimensional vector spaces. Math. Ann. 202 (1973), 337–345. | DOI | MR | Zbl
[7] S. Dineen: Cousin’s first problem on certain locally convex topological spaces. Acad. Brasil. Cienc. 48-1 (1976), 229–236. | MR
[8] L. Gruman: The Levi problem in certain infinite dimensional vector spaces. Illinois J. Math. 18 (1974), 20–26. | DOI | MR | Zbl
[9] S. Hitotumatu: Theorem of analytic functions of several complex variables. (1960), Baihuukan. (Japanese)
[10] J. Kajiwara: On an application of L. Ehrenpreis’ method to ordinary differential equations, Kōdai Math. Sem. Rep. 15-2 (1963), 94–105. | MR
[11] J. Kajiwara and L. Li: Localization of Global Existence of Holomorphic Solutions of Differential Equations with Complex Parameters. Proc. 4th Int. Coll. on Differential Equations, VSP (Utrecht), 1993, pp. 147–156. | MR
[12] J. Kajiwara and Y. Mori: On the existence of global holomorphic solutions of differential equations with complex parameters. Czechoslovak Math. J. 24(199) (1974), 444–454. | MR
[13] J. Kajiwara and K. H. Shon: Continuation and vanishing theorem for cohomology of infinite dimensional space. Pusan Kyôngnam Math. J. 1 (1993), 65–73.
[14] Ph. Noverraz: Pseudo-Convéxité, Convéxité et Domaines d’Holomorphie en Dimension Infinie. North-Holland. Math. Studies 3 (1973).
[15] K. Oka: Sur les fonctions analytiques plusieurs variables: VII Sur quelques notions arithmétiques. Bull. Soc. math. France 78 (1950), 1–27. | MR
[16] K. Oka: Sur les fonctions analytiques plusieurs variables: IX Domaines finis sans point critique intérieur. Jap. J. Math. 23 (1953), 1–27. | MR
[17] R. L. Soraggi: The $\overline{\partial }$-problem for a $(0,2)$-form in a D.F.N. space. J. Func. Anal. 98 (1991), 380–402. | DOI | MR
[18] J. P. S$\grave{e}$rre: Quelques problémes globaux aux variétés de Stein. Coll. Plus. Var., Bruxelle (1953), 57–68.
[19] H. Suzuki: On the global existence of holomorphic solutions of $\partial u/\partial x_1 = f$. Sci. Rep. Tokyo Kyoiku Daigaku 11 (1972), 253–258. | MR
[20] I. Wakabayashi: Non existence of holomorphic solutions of $\partial u/\partial z_1 = f$. Proc. Jap. Acad. 44 (1968), 820–822. | MR