Keywords: Third order nonlinear differential equations; nonoscillatory solutions; asymptotic properties of solutions
@article{CMJ_1998_48_4_a5,
author = {Tiryaki, Ayd{\i}n and \c{C}elebi, A. Okay},
title = {Nonoscillation and asymptotic behaviour for third order nonlinear differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {677--685},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658237},
zbl = {0955.34025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a5/}
}
TY - JOUR AU - Tiryaki, Aydın AU - Çelebi, A. Okay TI - Nonoscillation and asymptotic behaviour for third order nonlinear differential equations JO - Czechoslovak Mathematical Journal PY - 1998 SP - 677 EP - 685 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a5/ LA - en ID - CMJ_1998_48_4_a5 ER -
Tiryaki, Aydın; Çelebi, A. Okay. Nonoscillation and asymptotic behaviour for third order nonlinear differential equations. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 677-685. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a5/
[1] Barrett, J.H.: Oscillation theory of ordinary linear differential equations. Advances in Math. 3 (1969), 415–509. | MR | Zbl
[2] Bobrowski, D.: Asymptotic behaviour of functionally bounded solutions of the third order nonlinear differential equation. Fasc. Math. (Poznañ) 10 (1978), 67–76. | MR | Zbl
[3] Cecchi, M. and Marini, M.: On the oscillatory behaviour of a third order nonlinear differential equation. Nonlinear Anal. 15 (1990), 141–153. | DOI | MR
[4] Erbe, L. H.: Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equation. Ann. Math. Pura Appl. 110 (1976), 373–393. | DOI | MR
[5] Erbe, L. H. and Rao, V. S. M.: Nonoscillation results for third order nonlinear differential equations. J. Math. Analysis Applic. 125 (1987), 471–482. | DOI | MR
[6] Greguš, M.: Third Order Linear Differential Equations. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1987. | MR
[7] Greguš, M.: On the asymptotic properties of solutions of nonlinear third order differential equation. Archivum Mathematicum (Brno) 26 (1990), 101–106. | MR
[8] Greguš, M.: On the oscillatory behaviour of certain third order nonlinear differential equation. Archivum Mathematicum (Brno) 28 (1992), 221–228. | MR
[9] Greguš, M. and Greguš Jr. M.: On the oscillatory properties of solutions of a certain nonlinear third order differential equation. J. Math. Analysis Applic. 181 (1994), 575–585. | DOI | MR
[10] Greguš, M. and Greguš Jr., M.: Asymptotic properties of solution of a certain nonautonomous nonlinear differential equations of the third order. Bollettino U.M.I. (7) 7-A (1993), 341–350.
[11] Heidel, J. W.: Qualitative behaviour of solution of a third order nonlinear differential equation. Pacific J. Math. 27 (1968), 507–526. | DOI | MR
[12] Heidel J. W.: The existence of oscillatory solution for a nonlinear odd order nonlinear differential equation. Czechoslov. Math. J. 20 (1970), 93–97. | MR
[13] Ladde, G. S., Lakshmikantham, V. and Zhank, B. G.: Oscillation Theory of Differential Equations with Deviating Arguments. Marchel Dekker, Inc., New York, 1987. | MR
[14] Parhi, N. and Parhi, S.: Nonoscillation and asymptotic behaviour forced nonlinear third order differential equations. Bull. Inst. Math. Acad. Sinica 13 (1985), 367–384. | MR
[15] Parhi, N. and Parhi, S.: On the behaviour of solution of the differential equations $(r(t)y^{\prime \prime })^{\prime } + q(t)(y^{\prime })^\beta + p(t)y^\alpha = f(t)$. Annales Polon. Math. 47 (1986), 137–148. | MR
[16] Swanson, C.A.: Comparison and Oscillation Theory of Linear Differential Equations. New York and London, Acad. Press, 1968. | MR | Zbl
[17] Wintner, A.: On the nonexistence of conjugate points. Amer. J. Math. 73 (1951), 368–380. | DOI | MR | Zbl