$\sigma$-elements in multiplicative lattices
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 641-651 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06B23, 06B35, 06F10
@article{CMJ_1998_48_4_a2,
     author = {Jayaram, C. and Johnson, E. W.},
     title = {$\sigma$-elements in multiplicative lattices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {641--651},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658225},
     zbl = {0952.06020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a2/}
}
TY  - JOUR
AU  - Jayaram, C.
AU  - Johnson, E. W.
TI  - $\sigma$-elements in multiplicative lattices
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 641
EP  - 651
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a2/
LA  - en
ID  - CMJ_1998_48_4_a2
ER  - 
%0 Journal Article
%A Jayaram, C.
%A Johnson, E. W.
%T $\sigma$-elements in multiplicative lattices
%J Czechoslovak Mathematical Journal
%D 1998
%P 641-651
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a2/
%G en
%F CMJ_1998_48_4_a2
Jayaram, C.; Johnson, E. W. $\sigma$-elements in multiplicative lattices. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 641-651. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a2/

[one] H. Al-Ezeh: The pure spectrum of a PF-ring, Commen. Math. Univer. Sancti Pauli. 37 (1988), 179–183. | MR

[two] H. Al-Ezeh: Further results on reticulated rings. Act. Math. Hung. 60 (1992), 1–6. | DOI | MR | Zbl

[new] F. Alarcon, D.D. Anderson and C. Jayaram: Some results on commutative ideal theory. Period. Math. Hung. 30 (1995), 1–26. | DOI | MR

[three] D.D. Anderson: Abstract commutative ideal theory without chain condition. Algebra Universalis 6 (1976), 131–145. | DOI | MR | Zbl

[four] D.D. Anderson and C. Jayaram: Regular lattices. Studia Sci. Math. Hung. 30 (1995), 379–388. | MR

[five] D.D. Anderson, C. Jayaram and P.A. Phiri: Baer lattices. Act. Sci. Math. (Szeged) 59 (1994), 61–74. | MR

[six] F. Borceux and G. Van de Bossche: Algebra in a localic topos with applications to ring theory. Lecture Notes in Mathematics No. 1038, Spring Verlag, Berlin–Heidelberg, 1983. | DOI | MR

[seven] W.H. Cornish: Normal lattices. J. Aust. Math. Soc. 14 (1972), 200–215. | DOI | MR | Zbl

[eight] W.H. Cornish: $0$-ideals, congruences and sheaf representations of distributive lattices. Rev. Roumaine. Math. Pure Appl. 22 (1977), 1059–1067. | MR | Zbl

[nine] C.U. Jensen: On characterizations of Prüfer rings. Math. Scand. 13 (1963), 90–98. | DOI | MR | Zbl

[ten] P.J. McCarthy: Arithmetical rings and multiplicative lattices. Ann. Mat. Pura. Appl. 82 (1969), 267–276 MR 40 # 1378. | DOI | MR | Zbl