A new proof of a characterization of the set of all geodesics in a connected graph
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 809-813 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 05C12, 05C38
@article{CMJ_1998_48_4_a16,
     author = {Nebesk\'y, Ladislav},
     title = {A new proof of a characterization of the set of all geodesics in a connected graph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {809--813},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658202},
     zbl = {0949.05021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - A new proof of a characterization of the set of all geodesics in a connected graph
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 809
EP  - 813
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/
LA  - en
ID  - CMJ_1998_48_4_a16
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T A new proof of a characterization of the set of all geodesics in a connected graph
%J Czechoslovak Mathematical Journal
%D 1998
%P 809-813
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/
%G en
%F CMJ_1998_48_4_a16
Nebeský, Ladislav. A new proof of a characterization of the set of all geodesics in a connected graph. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 809-813. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/

[1] P. V. Ceccherini: Studying structures by counting geodesics. In: Combinatorial Designs and Applications, W. D. Wallis et al. (eds.), Marcel Dekker, New York and Basel, 1990, pp. 15–32. | MR | Zbl

[2] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Math. Bohemica 119 (1994), 15–20. | MR

[3] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. Journal 46 (121) (1996), 155–160. | MR

[4] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. Journal 47 (122) (1997), 149–161. | DOI | MR