A new proof of a characterization of the set of all geodesics in a connected graph
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 809-813
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{CMJ_1998_48_4_a16,
author = {Nebesk\'y, Ladislav},
title = {A new proof of a characterization of the set of all geodesics in a connected graph},
journal = {Czechoslovak Mathematical Journal},
pages = {809--813},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658202},
zbl = {0949.05021},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/}
}
Nebeský, Ladislav. A new proof of a characterization of the set of all geodesics in a connected graph. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 809-813. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a16/
[1] P. V. Ceccherini: Studying structures by counting geodesics. In: Combinatorial Designs and Applications, W. D. Wallis et al. (eds.), Marcel Dekker, New York and Basel, 1990, pp. 15–32. | MR | Zbl
[2] L. Nebeský: A characterization of the set of all shortest paths in a connected graph. Math. Bohemica 119 (1994), 15–20. | MR
[3] L. Nebeský: On the set of all shortest paths of a given length in a connected graph. Czechoslovak Math. Journal 46 (121) (1996), 155–160. | MR
[4] L. Nebeský: Geodesics and steps in a connected graph. Czechoslovak Math. Journal 47 (122) (1997), 149–161. | DOI | MR