On a class of real normed lattices
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 785-792
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
We say that a real normed lattice is quasi-Baire if the intersection of each sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due to M. Valdivia, which is not quasi-Baire is given. We obtain that $E$ is a quasi-Baire space iff $(E, T({\mathcal U}),T({\mathcal U}^{-1}))$, is a pairwise Baire bitopological space, where $\mathcal U$, is a quasi-uniformity that determines, in $L$. Nachbin’s sense, the topological ordered space $E$.
We say that a real normed lattice is quasi-Baire if the intersection of each sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due to M. Valdivia, which is not quasi-Baire is given. We obtain that $E$ is a quasi-Baire space iff $(E, T({\mathcal U}),T({\mathcal U}^{-1}))$, is a pairwise Baire bitopological space, where $\mathcal U$, is a quasi-uniformity that determines, in $L$. Nachbin’s sense, the topological ordered space $E$.
Classification :
54E15, 54E52, 54E55, 54F05
Keywords: Barrelled space; convex-Baire space; normed lattice; pairwise Baire spaces; quasi-Baire spaces; quasi-uniformity
Keywords: Barrelled space; convex-Baire space; normed lattice; pairwise Baire spaces; quasi-Baire spaces; quasi-uniformity
@article{CMJ_1998_48_4_a14,
author = {Alegre, C. and Ferrer, J. and Gregori, V.},
title = {On a class of real normed lattices},
journal = {Czechoslovak Mathematical Journal},
pages = {785--792},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658273},
zbl = {0949.54045},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a14/}
}
Alegre, C.; Ferrer, J.; Gregori, V. On a class of real normed lattices. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 785-792. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a14/
[1] Ferrando, J.C.; Ferrer, J.: On certain non barrelled normed spaces. Math. Japonica 38 (1993), 161–164. | MR
[2] Ferrer, J; Gregori, V; Alegre, C.: Quasi-uniform structures in linear lattices. Rocky Mountain J. Math. (1994), 877–884. | MR
[3] Fletcher, P.; Lindgren, W.F.: Quasi-uniform Spaces. Marcel Dekker Inc. New York, 1982. | MR
[4] Kelly, J,C.: Bitopological spaces. Proc. London Math. Soc. (3) 13 (1963), 71–89. | MR | Zbl
[5] Nachbin, L.: Topology and Order. Robert E. Kriegler Publishing Co., Huntington, New York, 1976. | MR | Zbl
[6] Valdivia, M.: Topics in Locally Convex Spaces. North-Holland, Amsterdam, 1982. | MR | Zbl