Solution of the Neumann problem for the Laplace equation
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 763-784 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
Classification : 31B10, 35J05, 35J10, 35J25
Keywords: single layer potential; generalized normal derivative
@article{CMJ_1998_48_4_a13,
     author = {Medkov\'a, Dagmar},
     title = {Solution of the {Neumann} problem for the {Laplace} equation},
     journal = {Czechoslovak Mathematical Journal},
     pages = {763--784},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658269},
     zbl = {0949.31004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a13/}
}
TY  - JOUR
AU  - Medková, Dagmar
TI  - Solution of the Neumann problem for the Laplace equation
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 763
EP  - 784
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a13/
LA  - en
ID  - CMJ_1998_48_4_a13
ER  - 
%0 Journal Article
%A Medková, Dagmar
%T Solution of the Neumann problem for the Laplace equation
%J Czechoslovak Mathematical Journal
%D 1998
%P 763-784
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a13/
%G en
%F CMJ_1998_48_4_a13
Medková, Dagmar. Solution of the Neumann problem for the Laplace equation. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 763-784. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a13/

[1] R. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402. | MR

[2] Yu. D. Burago, V. G. Maz’ya: Potential theory and function theory for irregular regions. Seminars in Mathematics, V. A. Steklov Mathematical Institute, Leningrad, 1969. | MR

[3] H. Federer: Geometric Measure Theory. Springer-Verlag Berlin, Heidelberg, New York, 1969. | MR | Zbl

[4] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms. Izvestija Mold. Fil. Akad. Nauk SSSR 10(76) (1960), 91–95.

[5] N. V. Grachev, V. G. Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19(4) (1986), 60–64. | MR

[6] N. V. Grachev, V. G. Maz’ya: Invertibility of boundary integral operators of elasticity on surfaces with conic points. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

[7] N. V. Grachev, V. G. Maz’ya: Solvability of a boundary integral equation on a polyhedron. Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.

[8] H. Heuser: Funktionalanalysis. Teubner, Stuttgart, 1975. | MR | Zbl

[9] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980, pp. . | MR

[10] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308. | MR

[11] N. L. Landkof: Fundamentals of modern potential theory. Izdat. Nauka, Moscow, 1966. (Russian) | MR

[12] V. G. Maz’ya: Boundary integral equations. Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27. Viniti, Moskva, 1988. (Russian)

[13] D. Medková: On the convergence of Neumann series for noncompact operator. Czechoslovak Math. J. 41(116) (1991), 312–316. | MR

[14] D. Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math. J. 47(122) (1997), 651–680. | DOI | MR

[15] I. Netuka: The third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 554–580. | MR | Zbl

[16] I. Netuka: Smooth surfaces with infinite cyclic variation. Čas. pěst. mat. 96 (1971), 86–101. (Czech) | MR | Zbl

[17] C. Neumann: Untersuchungen über das logarithmische und Newtonsche Potential. Teubner Verlag, Leipzig, 1877.

[18] C. Neumann: Zur Theorie des logarithmischen und des Newtonschen Potentials. Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig 22 (1870), 49–56, 264–321.

[19] C. Neumann: Über die Methode des arithmetischen Mittels. Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).

[20] J. Plemelj: Potentialtheoretische Untersuchungen. B. G. Teubner, Leipzig, 1911.

[21] J. Radon: Über Randwertaufgaben beim logarithmischen Potential. Sitzber. Akad. Wiss. Wien 128 (1919), 1123–1167.

[22] J. Radon: ARRAY(0x9436470). Birkhäuser, Vienna, 1987.

[23] A. Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 1–4, 135–177. | DOI | MR

[24] A. Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115. | DOI | MR | Zbl

[25] F. Riesz, B. Sz. Nagy: Leçons d’analyse fonctionnelles. Budapest, 1952.

[26] M. Schechter: Principles of Functional Analysis. Academic Press, 1973. | MR

[27] L. Schwartz: Theorie des distributions. Hermann, Paris, 1950. | MR | Zbl

[28] K. Yosida: Functional Analysis. Springer-Verlag, Berlin, 1965. | Zbl