Translativity of absolute weighted mean summability
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 755-761 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we give necessary and sufficient conditions on $(p_n)$ for $| R,p_n| _k$, $k\ge 1$, to be translative. So we extend the known results of Al-Madi [1] and Cesco $\left[ 4\right] $ to the case $k>1$.
In this paper, we give necessary and sufficient conditions on $(p_n)$ for $| R,p_n| _k$, $k\ge 1$, to be translative. So we extend the known results of Al-Madi [1] and Cesco $\left[ 4\right] $ to the case $k>1$.
Classification : 40A05, 40F05, 40G05
@article{CMJ_1998_48_4_a12,
     author = {Orhan, C.},
     title = {Translativity of absolute weighted mean summability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {755--761},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658265},
     zbl = {0949.40013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/}
}
TY  - JOUR
AU  - Orhan, C.
TI  - Translativity of absolute weighted mean summability
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 755
EP  - 761
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/
LA  - en
ID  - CMJ_1998_48_4_a12
ER  - 
%0 Journal Article
%A Orhan, C.
%T Translativity of absolute weighted mean summability
%J Czechoslovak Mathematical Journal
%D 1998
%P 755-761
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/
%G en
%F CMJ_1998_48_4_a12
Orhan, C. Translativity of absolute weighted mean summability. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 755-761. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/

[1] A. K. Al-Madi: On translativity of absolute weighted mean methods. Bull. Cal. Math. Soc. 79 (1987), 235–241. | MR | Zbl

[2] W. Beekmann and K. Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR

[3] H. Bor: On the relative strength of two absolute summability methods. Proc. Amer. Math. Soc. 113 (1991), 1009–1012. | DOI | MR | Zbl

[4] R. P. Cesco: On the theory of linear transformations and the absolute summability of divergent series. Univ. Nac. La Plata. Publ. Fac. Cien. Fisicomat. Series 2, Revista 2 (1941), 147–156. | MR

[5] G. G. Cooke: Infinite Matrices and Sequence Spaces. Macmillan Co., London, 1950. | MR | Zbl

[6] J. A. Fridy: Abel transformations into $l^1$. Canad. Math. Bull. 25 (1982), 421–427. | DOI | MR

[7] B. Kuttner and B. Thorpe: Translativity of some absolute summability methods. Analysis 14 (1994), 57–65. | DOI | MR

[8] F. M. Mears: Absolute regularity and Nörlund mean. Annals of Math. 38 (1937), 594–601. | DOI | MR

[9] C. Orhan: On equivalence of summability methods. Math. Slovaca 40 (1990), 171–175. | MR | Zbl

[10] R. E. Powell and S. M. Shah: Summability Theory and Applications. Prentice-Hall of India, New Delhi, 1988.