@article{CMJ_1998_48_4_a12,
author = {Orhan, C.},
title = {Translativity of absolute weighted mean summability},
journal = {Czechoslovak Mathematical Journal},
pages = {755--761},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658265},
zbl = {0949.40013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/}
}
Orhan, C. Translativity of absolute weighted mean summability. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 755-761. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a12/
[1] A. K. Al-Madi: On translativity of absolute weighted mean methods. Bull. Cal. Math. Soc. 79 (1987), 235–241. | MR | Zbl
[2] W. Beekmann and K. Zeller: Theorie der Limitierungsverfahren. Springer-Verlag, Berlin-Heidelberg-New York, 1970. | MR
[3] H. Bor: On the relative strength of two absolute summability methods. Proc. Amer. Math. Soc. 113 (1991), 1009–1012. | DOI | MR | Zbl
[4] R. P. Cesco: On the theory of linear transformations and the absolute summability of divergent series. Univ. Nac. La Plata. Publ. Fac. Cien. Fisicomat. Series 2, Revista 2 (1941), 147–156. | MR
[5] G. G. Cooke: Infinite Matrices and Sequence Spaces. Macmillan Co., London, 1950. | MR | Zbl
[6] J. A. Fridy: Abel transformations into $l^1$. Canad. Math. Bull. 25 (1982), 421–427. | DOI | MR
[7] B. Kuttner and B. Thorpe: Translativity of some absolute summability methods. Analysis 14 (1994), 57–65. | DOI | MR
[8] F. M. Mears: Absolute regularity and Nörlund mean. Annals of Math. 38 (1937), 594–601. | DOI | MR
[9] C. Orhan: On equivalence of summability methods. Math. Slovaca 40 (1990), 171–175. | MR | Zbl
[10] R. E. Powell and S. M. Shah: Summability Theory and Applications. Prentice-Hall of India, New Delhi, 1988.