Convergence estimate for second order Cauchy problems with a small parameter
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter $\varepsilon .$ The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.
We consider the second order initial value problem in a Hilbert space, which is a singular perturbation of a first order initial value problem. The difference of the solution and its singular limit is estimated in terms of the small parameter $\varepsilon .$ The coefficients are commuting self-adjoint operators and the estimates hold also for the semilinear problem.
Classification : 34E15, 34G20, 35B25, 35R15, 47N20
@article{CMJ_1998_48_4_a10,
     author = {Najman, Branko},
     title = {Convergence estimate for second order {Cauchy} problems with a small parameter},
     journal = {Czechoslovak Mathematical Journal},
     pages = {737--745},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658257},
     zbl = {0952.35151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a10/}
}
TY  - JOUR
AU  - Najman, Branko
TI  - Convergence estimate for second order Cauchy problems with a small parameter
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 737
EP  - 745
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a10/
LA  - en
ID  - CMJ_1998_48_4_a10
ER  - 
%0 Journal Article
%A Najman, Branko
%T Convergence estimate for second order Cauchy problems with a small parameter
%J Czechoslovak Mathematical Journal
%D 1998
%P 737-745
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a10/
%G en
%F CMJ_1998_48_4_a10
Najman, Branko. Convergence estimate for second order Cauchy problems with a small parameter. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 737-745. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a10/

[1] Engel, K.-J.: On singular perturbations of second order Cauchy problems. Pac. J. Math. 152 (1992), 79–91. | DOI | MR | Zbl

[2] Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North Holland, 1985. | MR | Zbl

[3] Najman, B.: Time singular limit of semilinear wave equations with damping. J. Math. Anal. Appl. 174 (1991), 95–117. | DOI | MR