@article{CMJ_1998_48_4_a1,
author = {Matou\v{s}kov\'a, Eva and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
title = {Second order differentiability and {Lipschitz} smooth points of convex functionals},
journal = {Czechoslovak Mathematical Journal},
pages = {617--640},
year = {1998},
volume = {48},
number = {4},
mrnumber = {1658221},
zbl = {0956.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/}
}
TY - JOUR AU - Matoušková, Eva AU - Zajíček, Luděk TI - Second order differentiability and Lipschitz smooth points of convex functionals JO - Czechoslovak Mathematical Journal PY - 1998 SP - 617 EP - 640 VL - 48 IS - 4 UR - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/ LA - en ID - CMJ_1998_48_4_a1 ER -
Matoušková, Eva; Zajíček, Luděk. Second order differentiability and Lipschitz smooth points of convex functionals. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 617-640. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/
[A] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57 (1976), 147–190. | DOI | MR | Zbl
[BL] Y. Benyamini, J. Lindenstrauss: Geometric Non-linear Functional Analysis. to appear.
[BN] J.M. Borwein, D. Noll: Second order differentiability of convex functions in Banach spaces. Trans. Amer. Math. Soc. 342 (1994), 43–82. | DOI | MR
[BF] J.M. Borwein, S. Fitzpatrick: Existence of nearest points in Banach spaces. Canad. J. Math. 41 (1989), 702–720. | DOI | MR
[C] J.P.R. Christensen: Topology and Borel Structure. North-Holland, Amsterdam, 1974. | MR | Zbl
[D] R. Dougherty: Examples of non-shy sets. Fundam. Math. 144 (1994), 73–88. | DOI | MR | Zbl
[DS] N. Dunford, J.T. Schwarz: Linear Operators I. Interscience Publishers, New York, 1967.
[F] M. Fabian: Lipschitz smooth points of convex functions and isomorphic characterisation of Hilbert spaces. Proc. London Math. Soc. 51 (1985), 113–126. | MR
[K] K. Kuratowski: Topology I. Academic Press, London, 1968.
[L] S.J. Leese: Measurable selections and the uniformization of Souslin sets. Amer. J. Math. 100 (1978), 19–41. | DOI | MR | Zbl
[Lt] K. Leichtweiß: Konvexe Mengen. Springer-Verlag, Berlin, 1980. | MR
[M] P. McMullen: On the inner parallel body of a convex body. Israel J. Math. 19 (1974), 217–219. | DOI | MR
[MM] J. Matoušek, E. Matoušková: A highly non-smooth norm on Hilbert space. (to appear). | MR
[MS] E. Matoušková, C. Stegall: A characterization of reflexive Banach spaces. Proc. Amer. Math. Soc (to appear). | MR
[P] R.R. Phelps: Convex Functions, Monotone Operators and Differentiabilitypubl Lecture Notes in Math. 1364, Springer-Verlag, Berlin. 1993. | MR
[R1] R.T. Rockafellar: Convex integral functionals and duality. Contributions to nonlinear functional analysis, E.H. Zarantello (ed.), New York, London, 1971, pp. 215–236. | MR | Zbl
[R2] R.T. Rockafellar: Integral functionals, normal integrands and measurable selections. Nonlinear operators and the calculus of variations, Lecture Notes in Math. 543, A. Dold and B. Eckmann (eds.), Bruxeles, 1975, pp. 157–207. | MR
[Rog] C.A. Rogers: Hausdorff Measures. Cambridge Univ. Press, Cambridge, 1970. | MR | Zbl
[S] S. Solecki: On Haar null sets. Fundam. Math. 149 (1996), 205–210. | MR | Zbl
[VZ] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications. Dissertationes Math. CCLXXXIX, (1989), 48. | MR