Second order differentiability and Lipschitz smooth points of convex functionals
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 617-640 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 26A24, 46G05, 46N10, 49J52, 58C20
@article{CMJ_1998_48_4_a1,
     author = {Matou\v{s}kov\'a, Eva and Zaj{\'\i}\v{c}ek, Lud\v{e}k},
     title = {Second order differentiability and {Lipschitz} smooth points of convex functionals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {617--640},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658221},
     zbl = {0956.58002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/}
}
TY  - JOUR
AU  - Matoušková, Eva
AU  - Zajíček, Luděk
TI  - Second order differentiability and Lipschitz smooth points of convex functionals
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 617
EP  - 640
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/
LA  - en
ID  - CMJ_1998_48_4_a1
ER  - 
%0 Journal Article
%A Matoušková, Eva
%A Zajíček, Luděk
%T Second order differentiability and Lipschitz smooth points of convex functionals
%J Czechoslovak Mathematical Journal
%D 1998
%P 617-640
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/
%G en
%F CMJ_1998_48_4_a1
Matoušková, Eva; Zajíček, Luděk. Second order differentiability and Lipschitz smooth points of convex functionals. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 617-640. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a1/

[A] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57 (1976), 147–190. | DOI | MR | Zbl

[BL] Y. Benyamini, J. Lindenstrauss: Geometric Non-linear Functional Analysis. to appear.

[BN] J.M. Borwein, D. Noll: Second order differentiability of convex functions in Banach spaces. Trans. Amer. Math. Soc. 342 (1994), 43–82. | DOI | MR

[BF] J.M. Borwein, S. Fitzpatrick: Existence of nearest points in Banach spaces. Canad. J. Math. 41 (1989), 702–720. | DOI | MR

[C] J.P.R. Christensen: Topology and Borel Structure. North-Holland, Amsterdam, 1974. | MR | Zbl

[D] R. Dougherty: Examples of non-shy sets. Fundam. Math. 144 (1994), 73–88. | DOI | MR | Zbl

[DS] N. Dunford, J.T. Schwarz: Linear Operators I. Interscience Publishers, New York, 1967.

[F] M. Fabian: Lipschitz smooth points of convex functions and isomorphic characterisation of Hilbert spaces. Proc. London Math. Soc. 51 (1985), 113–126. | MR

[K] K. Kuratowski: Topology I. Academic Press, London, 1968.

[L] S.J. Leese: Measurable selections and the uniformization of Souslin sets. Amer. J. Math. 100 (1978), 19–41. | DOI | MR | Zbl

[Lt] K. Leichtweiß: Konvexe Mengen. Springer-Verlag, Berlin, 1980. | MR

[M] P. McMullen: On the inner parallel body of a convex body. Israel J. Math. 19 (1974), 217–219. | DOI | MR

[MM] J. Matoušek, E. Matoušková: A highly non-smooth norm on Hilbert space. (to appear). | MR

[MS] E. Matoušková, C. Stegall: A characterization of reflexive Banach spaces. Proc. Amer. Math. Soc (to appear). | MR

[P] R.R. Phelps: Convex Functions, Monotone Operators and Differentiabilitypubl Lecture Notes in Math. 1364, Springer-Verlag, Berlin. 1993. | MR

[R1] R.T. Rockafellar: Convex integral functionals and duality. Contributions to nonlinear functional analysis, E.H. Zarantello (ed.), New York, London, 1971, pp. 215–236. | MR | Zbl

[R2] R.T. Rockafellar: Integral functionals, normal integrands and measurable selections. Nonlinear operators and the calculus of variations, Lecture Notes in Math. 543, A. Dold and B. Eckmann (eds.), Bruxeles, 1975, pp. 157–207. | MR

[Rog] C.A. Rogers: Hausdorff Measures. Cambridge Univ. Press, Cambridge, 1970. | MR | Zbl

[S] S. Solecki: On Haar null sets. Fundam. Math. 149 (1996), 205–210. | MR | Zbl

[VZ] L. Veselý, L. Zajíček: Delta-convex mappings between Banach spaces and applications. Dissertationes Math. CCLXXXIX, (1989), 48. | MR