On the defect spectrum of an extension of a Banach space operator
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 609-616 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Let $T$ be an operator acting on a Banach space $X$. We show that between extensions of $T$ to some Banach space $Y\supset X$ which do not increase the defect spectrum (or the spectrum) it is possible to find an extension with the minimal possible defect spectrum.
Let $T$ be an operator acting on a Banach space $X$. We show that between extensions of $T$ to some Banach space $Y\supset X$ which do not increase the defect spectrum (or the spectrum) it is possible to find an extension with the minimal possible defect spectrum.
Classification : 47A10, 47A20
@article{CMJ_1998_48_4_a0,
     author = {Kordula, Vladim{\'\i}r},
     title = {On the defect spectrum of an extension of a {Banach} space operator},
     journal = {Czechoslovak Mathematical Journal},
     pages = {609--616},
     year = {1998},
     volume = {48},
     number = {4},
     mrnumber = {1658217},
     zbl = {0954.47002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a0/}
}
TY  - JOUR
AU  - Kordula, Vladimír
TI  - On the defect spectrum of an extension of a Banach space operator
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 609
EP  - 616
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a0/
LA  - en
ID  - CMJ_1998_48_4_a0
ER  - 
%0 Journal Article
%A Kordula, Vladimír
%T On the defect spectrum of an extension of a Banach space operator
%J Czechoslovak Mathematical Journal
%D 1998
%P 609-616
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a0/
%G en
%F CMJ_1998_48_4_a0
Kordula, Vladimír. On the defect spectrum of an extension of a Banach space operator. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 4, pp. 609-616. http://geodesic.mathdoc.fr/item/CMJ_1998_48_4_a0/

[1] S. Axler, J. Conway, G. McDonald: Toeplitz operators on Bergman spaces. Canad. J. Math. 34 (1982), 466–483. | DOI | MR

[2] B. Bollobás: To what extent can the spectrum of an operator be diminished under an extension, in: Linear and Complex Analysis Problem Book, V. P. Havin, S. V. Hruščev and N. K. Nikol’skij (eds.), Lecture Notes in Math. 1043, Springer, Berlin 1984, 210.

[3] V. Müller: Adjoint inverses to noncommutative Banach algebras and extensions of operator. Studia Math. 91 (1988), 73–77. | DOI | MR

[4] V. Müller: On the joint essential spectrum of commuting operators. Acta Sci. Math. Szeged 57 (1993), 199–205. | MR

[5] C. J. Read: Spectrum reducing extensions for one operator on a Banach space. Trans. Amer. Math. Soc. 308 (1988), 413–429. | DOI | MR

[6] Z. Słodkovski and W. .Zelazko: On the joint spectra of commuting families of operators. Studia Math. 50 (1974), 127–148. | DOI | MR

[7] W. .Zelazko: On a problem concerning joint approximate point spectra. Studia Math. 45 (1973), 239–240. | DOI | MR | Zbl