Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact $3$-structure
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 545-563 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not quaternionic Kähler.
We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not quaternionic Kähler.
Classification : 53C15, 53C25, 53C26, 53C55
@article{CMJ_1998_48_3_a9,
     author = {Cabrera, Francisco Mart{\'\i}n},
     title = {Almost {hyper-Hermitian} structures in bundle spaces over manifolds with almost contact $3$-structure},
     journal = {Czechoslovak Mathematical Journal},
     pages = {545--563},
     year = {1998},
     volume = {48},
     number = {3},
     mrnumber = {1637934},
     zbl = {0955.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a9/}
}
TY  - JOUR
AU  - Cabrera, Francisco Martín
TI  - Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact $3$-structure
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 545
EP  - 563
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a9/
LA  - en
ID  - CMJ_1998_48_3_a9
ER  - 
%0 Journal Article
%A Cabrera, Francisco Martín
%T Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact $3$-structure
%J Czechoslovak Mathematical Journal
%D 1998
%P 545-563
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a9/
%G en
%F CMJ_1998_48_3_a9
Cabrera, Francisco Martín. Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact $3$-structure. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 545-563. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a9/

[1] M. Berger: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83 (1955), 279–330. | MR

[2] E. Bonan: Sur les $G$-structures de type quaternionien. Cahiers de Top. et Geom. Diff. 9 (1967), 389–463. | MR | Zbl

[3] C. P. Boyer, K. Galicki, B. M. Mann: Quaternionic reduction and Einstein manifolds. Comm. Anal. Geom. 1(2) (1993), 229–279. | DOI | MR

[4] C. P. Boyer, K. Galicki, B. M. Mann: The geometry and topology of $3$-Sasakian manifolds. J. reine angew. Math. 455 (1994), 18$3$–220. | MR

[5] D. Chinea, C. González: A classification of almost contact metric structures. Ann. Mat. Pura Appl. (IV) Vol. CLVI (1990), 15–36. | MR

[6] N. J. Hitchin: Yang Mills on Riemannian surfaces. Proc. London Math. Soc. 55 (1987), 535–589.

[7] S. Ishihara: Quaternion Kählerian manifolds and fibered Riemannian spaces with Sasakian $3$-structure. Kodai Math. Sem. Rep. 25 (1973), 321–329. | DOI | MR

[8] S. Ishihara: Quaternion Kählerian manifolds. J. Diff. Geom. 9 (1974), 48$3$–500. | MR | Zbl

[9] S. Kobayashi: Principal fibre bundles with 1-dimensional toroidal group. Tôhoku Math. J. 2 (1956), 29–45. | MR

[10] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. 2 volumes, Intersciences Pub., New York (1963, 1969). | MR

[11] M. Konishi: On manifolds with Sasakian $3$-structure over quaternion Kählerian manifolds. Kodai Math. Sem. Rep. 26 (1975), 194–200. | DOI | MR

[12] V. Kraines: Topology of quaternionic manifolds. Trans. Amer. Math. Soc. 122 (1966), 357–367. | DOI | MR | Zbl

[13] Y. Y. Kuo: On almost contact $3$-structure. Tôhoku Math. J. 22 (1970), 325–332. | DOI | MR | Zbl

[14] D. Monar: $3$-estructuras casi contacto. Tesis Doctoral, Serv. de Public. Univ. de La Laguna (1987).

[15] Y. Ogawa: Some properties on manifolds with almost contact structures. Tôhoku Math. J. 15 (1963), 148–161. | DOI | MR

[16] J. A. Oubiña: New classes of almost contact metric structures. Publ. Math. Debrecen 32 (1985), 187–193. | MR

[17] L. Ornea, P. Piccini: Locally conformal Kähler structures in quaternionic geometric. Trans. Amer. Math. Soc. (1995) (to appear). | MR

[18] S. Salamon: Quaternionic Kähler manifolds. Invent. Math. 67 (1982), 142–171. | MR | Zbl

[19] A. F. Swann: HyperKähler and quaternionic Kähler geometry. Math. Ann. 289 (1991), 421–450. | DOI | MR | Zbl

[20] A. F. Swann: Some remarks on quaternion-Hermitian manifolds, preprint. (1994).

[21] S. Tanno: Almost complex structures in bundle spaces over almost contact manifolds. J. Math. Soc. Japan 17(2) (1965), 167–186. | DOI | MR | Zbl