Equimorphy in varieties of distributive double $p$-algebras
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 473-544 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Any finitely generated regular variety $\mathbb{V}$ of distributive double $p$-algebras is finitely determined, meaning that for some finite cardinal $n(\mathbb{V})$, any subclass $S\subseteq \mathbb{V}$ of algebras with isomorphic endomorphism monoids has fewer than $n(\mathbb{V})$ pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double $p$-algebras must be almost regular.
Any finitely generated regular variety $\mathbb{V}$ of distributive double $p$-algebras is finitely determined, meaning that for some finite cardinal $n(\mathbb{V})$, any subclass $S\subseteq \mathbb{V}$ of algebras with isomorphic endomorphism monoids has fewer than $n(\mathbb{V})$ pairwise non-isomorphic members. This result follows from our structural characterization of those finitely generated almost regular varieties which are finitely determined. We conjecture that any finitely generated, finitely determined variety of distributive double $p$-algebras must be almost regular.
Classification : 06D15, 06E15, 08A35, 08B99, 18B15, 54F05
Keywords: distributive double $p$-algebra; variety; endomorphism monoid; equimorphy; categorical universality
@article{CMJ_1998_48_3_a8,
     author = {Koubek, V. and Sichler, J.},
     title = {Equimorphy in varieties of distributive double $p$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {473--544},
     year = {1998},
     volume = {48},
     number = {3},
     mrnumber = {1637938},
     zbl = {0952.06013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/}
}
TY  - JOUR
AU  - Koubek, V.
AU  - Sichler, J.
TI  - Equimorphy in varieties of distributive double $p$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 473
EP  - 544
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/
LA  - en
ID  - CMJ_1998_48_3_a8
ER  - 
%0 Journal Article
%A Koubek, V.
%A Sichler, J.
%T Equimorphy in varieties of distributive double $p$-algebras
%J Czechoslovak Mathematical Journal
%D 1998
%P 473-544
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/
%G en
%F CMJ_1998_48_3_a8
Koubek, V.; Sichler, J. Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 473-544. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/

[1] M. E. Adams, V. Koubek and J. Sichler: Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras). Trans. Amer. Math. Soc. 285 (1984), 57–79. | DOI | MR

[2] M. E. Adams, V. Koubek and J. Sichler: Pseudocomplemented distributive lattices with small endomorphism monoids. Bull. Austral. Math. Soc. 28 (1983), 305–318. | DOI | MR

[3] R. Beazer: The determination congruence on double $p$-algebras. Algebra Universalis 6 (1976), 121–129. | DOI | MR | Zbl

[4] B. A. Davey: Subdirectly irreducible distributive double $p$-algebras. Algebra Universalis 8 (1978), 73–88. | DOI | MR | Zbl

[5] L. M. Gluskin: Semigroups of isotone transformations. Uspekhi Math. Nauk 16 (1961), 157–162. (Russian) | MR

[6] V. Koubek: Infinite image homomorphisms of distributive bounded lattices. Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281. | MR

[7] V. Koubek and H. Radovanská: Algebras determined by their endomorphism monoids. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225. | MR

[8] V. Koubek and J. Sichler: Universal varieties of distributive double $p$-algebras. Glasgow Math. J. 26 (1985), 121–131. | DOI | MR

[9] V. Koubek and J. Sichler: Categorical universality of regular distributive double $p$-algebras. Glasgow Math. J. 32 (1990), 329–340. | DOI | MR

[10] V. Koubek and J. Sichler: Finitely generated universal varieties of distributive double $p$-algebras. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164. | MR

[11] V. Koubek and J. Sichler: Priestley duals of products. Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256. | MR

[12] K. D. Magill: The semigroup of endomorphisms of a Boolean ring. Semigroup Forum 4 (1972), 411–416. | MR

[13] C. J. Maxson: On semigroups of Boolean ring endomorphisms. Semigroup Forum 4 (1972), 78–82. | DOI | MR | Zbl

[14] R. McKenzie and C. Tsinakis: On recovering a bounded distributive lattices from its endomorphism monoid. Houston J. Math. 7 (1981), 525–529. | MR

[15] H. A. Priestley: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. | DOI | MR | Zbl

[16] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices. Quart. J. Math. Oxford 26 (1975), 215–228. | DOI | MR | Zbl

[17] H. A. Priestley: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 36–60. | MR | Zbl

[18] A. Pultr and V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. | MR

[19] B. M. Schein: Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50. | DOI | MR | Zbl