Keywords: distributive double $p$-algebra; variety; endomorphism monoid; equimorphy; categorical universality
@article{CMJ_1998_48_3_a8,
author = {Koubek, V. and Sichler, J.},
title = {Equimorphy in varieties of distributive double $p$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {473--544},
year = {1998},
volume = {48},
number = {3},
mrnumber = {1637938},
zbl = {0952.06013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/}
}
Koubek, V.; Sichler, J. Equimorphy in varieties of distributive double $p$-algebras. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 473-544. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a8/
[1] M. E. Adams, V. Koubek and J. Sichler: Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras). Trans. Amer. Math. Soc. 285 (1984), 57–79. | DOI | MR
[2] M. E. Adams, V. Koubek and J. Sichler: Pseudocomplemented distributive lattices with small endomorphism monoids. Bull. Austral. Math. Soc. 28 (1983), 305–318. | DOI | MR
[3] R. Beazer: The determination congruence on double $p$-algebras. Algebra Universalis 6 (1976), 121–129. | DOI | MR | Zbl
[4] B. A. Davey: Subdirectly irreducible distributive double $p$-algebras. Algebra Universalis 8 (1978), 73–88. | DOI | MR | Zbl
[5] L. M. Gluskin: Semigroups of isotone transformations. Uspekhi Math. Nauk 16 (1961), 157–162. (Russian) | MR
[6] V. Koubek: Infinite image homomorphisms of distributive bounded lattices. Coll. Math. Soc. János Bolyai, 43. Lecture in Universal Algebra, Szeged 1983, North Holland, Amsterdam, 1985, pp. 241–281. | MR
[7] V. Koubek and H. Radovanská: Algebras determined by their endomorphism monoids. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 187–225. | MR
[8] V. Koubek and J. Sichler: Universal varieties of distributive double $p$-algebras. Glasgow Math. J. 26 (1985), 121–131. | DOI | MR
[9] V. Koubek and J. Sichler: Categorical universality of regular distributive double $p$-algebras. Glasgow Math. J. 32 (1990), 329–340. | DOI | MR
[10] V. Koubek and J. Sichler: Finitely generated universal varieties of distributive double $p$-algebras. Cahiers Topologie Gèom. Différentielle Catégoriques 35 (1994), 139–164. | MR
[11] V. Koubek and J. Sichler: Priestley duals of products. Cahiers Topologie Gèom. Différentielle Catégoriques 32 (1991), 243–256. | MR
[12] K. D. Magill: The semigroup of endomorphisms of a Boolean ring. Semigroup Forum 4 (1972), 411–416. | MR
[13] C. J. Maxson: On semigroups of Boolean ring endomorphisms. Semigroup Forum 4 (1972), 78–82. | DOI | MR | Zbl
[14] R. McKenzie and C. Tsinakis: On recovering a bounded distributive lattices from its endomorphism monoid. Houston J. Math. 7 (1981), 525–529. | MR
[15] H. A. Priestley: Representation of distributive lattices by means of ordered Stone spaces. Bull. London Math. Soc. 2 (1970), 186–190. | DOI | MR | Zbl
[16] H. A. Priestley: The construction of spaces dual to pseudocomplemented distributive lattices. Quart. J. Math. Oxford 26 (1975), 215–228. | DOI | MR | Zbl
[17] H. A. Priestley: Ordered sets and duality for distributive lattices. Ann. Discrete Math. 23 (1984), 36–60. | MR | Zbl
[18] A. Pultr and V. Trnková: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North Holland, Amsterdam, 1980. | MR
[19] B. M. Schein: Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups. Fund. Math. 68 (1970), 31–50. | DOI | MR | Zbl