Keywords: quasi-metric; continuous map; Borel map; $\sigma $-discrete map; $\sigma $-discretely decomposable family; absolutely Borel set; absolutely analytic space
@article{CMJ_1998_48_3_a6,
author = {Karaku\c{s}, Yusuf},
title = {Best simultaneous $L_p$ approximations},
journal = {Czechoslovak Mathematical Journal},
pages = {457--463},
year = {1998},
volume = {48},
number = {3},
mrnumber = {1637922},
zbl = {0957.41011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a6/}
}
Karakuş, Yusuf. Best simultaneous $L_p$ approximations. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 457-463. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a6/
[1] A.S.B. Holland and B.N. Sahney: Some remarks on best simultaneous approximation. Theory of Approximation with Application, A.G. Law and B.N. Sahney (eds.), Academic Press, New York, 1976, pp. 332–337. | MR
[2] W.H. Ling: On simultaneous Chebyshev approximation in the sum norm. Proc. Amer. Mat. Soc. 48 (1975), 185–188. | MR | Zbl
[3] G.M. Phillips and B.N. Sahney: Best simultaneous approximation in the $L_{{1}}$ and $L_{{2}}$ norms. Theory of Approximation with Applications, A.G. Law and B.N. Sahney (eds.), Academic press, New York, 1976, pp. 213–219. | MR
[4] A.S.B. Holland, J.H. McCabe, G.M. Phillips and B.N. Sahney: Best simultaneous $L_{{1}}$-approximations. Journal of Approximation Theory 24 (1978), 361–365. | DOI | MR
[5] Y. Karakuş: Simultaneous approximation in $L_{p}$ norm. Doga-Turkish Journal of Mathematics, Tübitak-Ankara 15 (1991), 25–28. | MR
[6] Y. Karakuş and S. Atacik: Simultaneous Approximation in $L_{p}[ {a,b}] $ when $p$ is non-integer real number. Doga-Turkish Journal of Mathematics, Tübitak-Ankara 15 (1991), 165–168. | MR