Keywords: quasi-metric; continuous map; Borel map; $\sigma $-discrete map; $\sigma $-discretely decomposable family; absolutely Borel set; absolutely analytic space
@article{CMJ_1998_48_3_a5,
author = {K\"unzi, Hans-Peter A. and Wajch, Eliza},
title = {On $\sigma$-discrete {Borel} mappings via quasi-metrics},
journal = {Czechoslovak Mathematical Journal},
pages = {439--455},
year = {1998},
volume = {48},
number = {3},
mrnumber = {1637926},
zbl = {0949.54036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a5/}
}
Künzi, Hans-Peter A.; Wajch, Eliza. On $\sigma$-discrete Borel mappings via quasi-metrics. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 439-455. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a5/
[1] R. Engelking: General Topology. Heldermann, Berlin, 1989. | MR | Zbl
[2] W. G. Fleissner: An axiom for nonseparable Borel Theory. Trans. Amer. Math. Soc. 251 (1979), 309–328. | DOI | MR | Zbl
[3] W. G. Fleissner, R. W. Hansell and H. J. K. Junnila: PMEA implies Proposition P. Topology Appl. 13 (1982), 255–262. | DOI | MR
[4] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces. Marcel Dekker, New York, 1982. | MR
[5] D. H. Fremlin, R. W. Hansell and H. J. K. Junnila: Borel functions of bounded class. Trans. Amer. Math. Soc. 277 (1983), 835–849. | DOI | MR
[6] R. W. Hansell: Borel measurable mappings for nonseparable metric spaces. Trans. Amer. Math. Soc. 161 (1971), 145–169. | DOI | MR | Zbl
[7] R. W. Hansell: On Borel mappings and Baire functions. Trans. Amer. Math. Soc. 194 (1974), 195–211. | DOI | MR | Zbl
[8] H. J. K. Junnila: Neighbournets. Pacific J. Math. 76 (1978), 83–108. | MR
[9] H. J. K. Junnila and H. P. A. Künzi: Characterizations of absolute $F_{{ \sigma }{ \delta }}$-sets. Czech Math. Journal (to appear). | MR
[10] H. P. A. Künzi: On strongly quasi-metrizable spaces. Arch. Math. (Basel) 41 (1983), 57–63. | DOI
[11] H. P. A. Künzi and E. Wajch: Borel classification via quasi-metrics. Topology Appl. 77 (1997), 183–192. | DOI | MR
[12] K. Kuratowski: Topology, vol. I. Academic Press, New York and London, 1966. | MR | Zbl
[13] E. P. Lane: Bitopological spaces and quasi-uniform spaces. Proc. London Math. Soc. 17 (1967), 241–256. | MR | Zbl
[14] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability. Topology Appl. 50 (1993), 283–289. | DOI | MR
[15] A. H. Stone: Analytic sets in non-separable metric spaces, Part 5 of “Analytic Sets” (C. A. Rogers et al.). Academic Press, London, 1980.