Keywords: lattice ordered group valued function and measure; Kurzweil-Henstock construction of an integral; limit theorems
@article{CMJ_1998_48_3_a10,
author = {Rie\v{c}an, Beloslav and Vr\'abelov\'a, Marta},
title = {The {Kurzweil} construction of an integral in ordered spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {565--574},
year = {1998},
volume = {48},
number = {3},
mrnumber = {1637875},
zbl = {0953.28007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a10/}
}
Riečan, Beloslav; Vrábelová, Marta. The Kurzweil construction of an integral in ordered spaces. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 565-574. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a10/
[1] Boccuto, A.: Riesz spaces, integration and sandwich theorems. Tatra Mountains Math. Publ. 3 (1993), 213–230. | MR | Zbl
[2] Duchoň, M. – Riečan, B.: On the Kurzweil-Stieltjes integral in ordered spaces. Tatra Mountains Math. Publ 8 (1996), 133–141. | MR
[3] Haluška, J.: On integration in complete vector lattices. Tatra Mountains Math. Publ. 3 (1993), 201–212. | MR
[4] Henstock, R.: The General Theory of Integration. Oxford, 1991. | MR | Zbl
[5] Kurzweil, J.: Nicht absolut konvergente Integrale. Teubner Leipzig, 1980. | MR
[6] Riečan, B.: On the Kurzweil integral in compact topological spaces. Rad. Mat. 2 (1986), 151–163. | MR
[7] Riečan, B.: On the Kurzweil integral for functions with values in ordered spaces I. Acta Math. Univ. Comeniana 56–57 (1990), 75–83. | MR
[8] Riečan, B. – Vrábelová, M.: On the Kurzweil integral for functions with values in ordered spaces II. Math. Slov. 43 (1993), 471–475. | MR
[9] Riečan, B. – Vrábelová, M.: On integration with respect to operator valued measures in Riesz spaces. Tatra Mountains Math. Publ. 2 (1993), 149–165. | MR
[10] Száz, A.: The fundamental theorem of calculus in an abstract setting. Tatra Mountains Math. Publ. 2 (1993), 167–174. | MR
[11] Vrábelová, M. – Riečan, B.: On the Kurzweil integral for functions with values in ordered spaces III. Tatra Mountains Math. Publ 8 (1996), 93–100. | MR