Geometrical aspects of the covariant dynamics of higher order
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 395-412 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We present some geometrical aspects of a higher-order jet bundle which is considered a suitable framework for the study of higher-order dynamics in continuous media. We generalize some results obtained by A. Vondra, [7]. These results lead to a description of the geometrical dynamics of higher order generated by regular equations.
We present some geometrical aspects of a higher-order jet bundle which is considered a suitable framework for the study of higher-order dynamics in continuous media. We generalize some results obtained by A. Vondra, [7]. These results lead to a description of the geometrical dynamics of higher order generated by regular equations.
Classification : 53B15, 53C05, 58A20, 58F05, 70H03, 70H35, 73B99
@article{CMJ_1998_48_3_a1,
     author = {Opris, D. and Albu, I. D.},
     title = {Geometrical aspects of the covariant dynamics of higher order},
     journal = {Czechoslovak Mathematical Journal},
     pages = {395--412},
     year = {1998},
     volume = {48},
     number = {3},
     mrnumber = {1637910},
     zbl = {0955.53013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a1/}
}
TY  - JOUR
AU  - Opris, D.
AU  - Albu, I. D.
TI  - Geometrical aspects of the covariant dynamics of higher order
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 395
EP  - 412
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a1/
LA  - en
ID  - CMJ_1998_48_3_a1
ER  - 
%0 Journal Article
%A Opris, D.
%A Albu, I. D.
%T Geometrical aspects of the covariant dynamics of higher order
%J Czechoslovak Mathematical Journal
%D 1998
%P 395-412
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a1/
%G en
%F CMJ_1998_48_3_a1
Opris, D.; Albu, I. D. Geometrical aspects of the covariant dynamics of higher order. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 395-412. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a1/

[1] I. M. Anderson: Aspects of the inverse problem to the calculus of variations. Arch. Math. (Brno) 24 (1988), 181–202. | MR | Zbl

[2] M. Ferraris, M. Francaviglia: On the Global Structure of Lagrangian and Hamiltonian Formalisms in Higher Order Calculus of Variations, Proceedings of the Meeting “Geometry and Physics”. Florence, October 12–15 (1982), 43–70. | MR

[3] H. Goldschmidt, S. Stemberg: The Hamilton-Cartan Formalism in the Calculus of Variations. Ann. Inst. Fourier, Grenoble 23 (1973), 203–267. | DOI | MR

[4] M. J. Gotay: A multisymplectic Framework for Classical Field Theory aud the Calculus of Variations. I. Covariant Hamiltonian Formalism, Mechanics, Analysis and Geometry 200 Years after Lagrange, Amsterdam, 1990. | MR

[5] A. Vondra: Semisprays, connections and regular equations in higher order mechanics. Proc. Conf. Diff. Geom. and Its. Appl., World Scientific, Singapore (1990), 276–287. | MR | Zbl

[6] A. Vondra: Some connections related to the geometry of regular higher-order dynamics. Sbornik VA Brno, Řada “B” 2 (1992), 7–18.

[7] A. Vondra: Natural Dynamical Connections. Czechoslovak Math. J., Praha 41(116) (1991), 724–730. | MR | Zbl