On the extension of $D$-poset valued measures
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 385-394 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A variant of Alexandrov theorem is proved stating that a compact, subadditive $D$-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
A variant of Alexandrov theorem is proved stating that a compact, subadditive $D$-poset valued mapping is continuous. Then the measure extension theorem is proved for MV-algebra valued measures.
Classification : 28B15, 28E10
Keywords: $D$-posets; extension of measures; observables in quantum mechanics
@article{CMJ_1998_48_3_a0,
     author = {Rie\v{c}an, Beloslav},
     title = {On the extension of $D$-poset valued measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {385--394},
     year = {1998},
     volume = {48},
     number = {3},
     mrnumber = {1637914},
     zbl = {0953.28015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a0/}
}
TY  - JOUR
AU  - Riečan, Beloslav
TI  - On the extension of $D$-poset valued measures
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 385
EP  - 394
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a0/
LA  - en
ID  - CMJ_1998_48_3_a0
ER  - 
%0 Journal Article
%A Riečan, Beloslav
%T On the extension of $D$-poset valued measures
%J Czechoslovak Mathematical Journal
%D 1998
%P 385-394
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a0/
%G en
%F CMJ_1998_48_3_a0
Riečan, Beloslav. On the extension of $D$-poset valued measures. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 3, pp. 385-394. http://geodesic.mathdoc.fr/item/CMJ_1998_48_3_a0/

[1] Birkhoff, G.: Lattice theory. Providence (1967). | MR | Zbl

[2] Chang, C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490. | DOI | MR | Zbl

[3] Chovanec, F.: States and observables on MV algebras. Tatra Mountains Math. Publ. 3 (1993), 55–63. | MR | Zbl

[4] Chovanec, F., Jurečková, M.: Law of large numbers on $D$-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 15–18. | MR

[5] Chovanec, F., Kôpka, F.: On a representation of observables in $D$-posets of fuzzy sets. Tatra Mountains Math. Publ. 1 (1992), 19–24. | MR

[6] Dvurečenskij, A., Pulmannová, S.: Difference posets, effects and quantum measurements. Int. J. Theor. Phys. 33 (1994), 819–850. | DOI | MR

[7] Dvurečenskij, A., Riečan, B.: Decomposition of measures on orthoalgebras and difference posets. Int. J. Theor. Phys. 33 (1994), 1403–1418. | DOI

[8] Foulis, D. J., Greechie, R. J., Rüttimann, G. T.: Filters and supports in orthoalgebras. Int. J. Theor. Physics 31 (1992), 789–807. | DOI | MR

[9] Giuntini, R., Greling, H.: Toward a formal language for unsharp properties. Foundations of Physics 20 (1989), 931–945. | DOI | MR

[10] Jakubík, J.: On complete MV-algebras. Czechoslovak Math. J. 45 (1995), 473–480. | MR

[11] Jurečková, M.: The measure extension theorem on MV $\sigma $-algebras. Tatra Mountains Math. Publ. 6 (1995), 55–61. | MR

[12] Kôpka, F., Chovanec, F.: $D$-posets. Math. Slovaca 44 (1994), 21–34. | MR

[13] Mesiar, R.: Fuzzy difference posets and MV-algebras. Proc. IPMU 94, Paris 1994, B. Bouchon–Meunier and R. R. Jager (eds.), 1994, 208–212.

[14] Mundici, D.: Interpretation of $AFC^\ast $-algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63. | DOI | MR

[15] Riečan, B.: On the lattice group valued measures. Čas. pěst. mat. 101 (1976), 343–349. | MR

[16] Riečan, B.: On measures and integrals with values in ordered groups. Math. Slovaca 33 (1983), 153–163. | MR

[17] Riečan, B.: On the convergence of observables in $D$-posets. Tatra Mountains Math. Publ. 12 (1997), 7–12. | MR

[18] Volauf, P.: On various notions of regularity in ordered spaces. Math. Slovaca 35 (1985), 127–130. | MR | Zbl

[19] Volauf, P.: Alexandroff and Kolmogorov consistency theorem for measures with values in partially ordered groups. Tatra Mountains Math. Publ. 3 (1993), 237–244. | MR

[20] Vonkomerová, M., Vrábelová, M.: On the extension of positive continuous operators. Math. Slovaca 31 (1981), 251–262. | MR

[21] Wright, J. D. M.: The measure extension problem for vector lattices. Ann. Inst. Fourier Grenoble 21 (1971), 65–85. | DOI | MR | Zbl