Pointwise convergence fails to be strict
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 313-320 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is known that the ring $B(\mathbb R)$ of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring $C(\mathbb R)$ of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of $C(\mathbb R)$. In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of $C(\mathbb R)$ which differs from $B(\mathbb R)$.
It is known that the ring $B(\mathbb R)$ of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring $C(\mathbb R)$ of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of $C(\mathbb R)$. In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of $C(\mathbb R)$ which differs from $B(\mathbb R)$.
Classification : 46E25, 54A05, 54C30, 54C35
@article{CMJ_1998_48_2_a7,
     author = {Bors{\'\i}k, J\'an and Fri\v{c}, Roman},
     title = {Pointwise convergence fails to be strict},
     journal = {Czechoslovak Mathematical Journal},
     pages = {313--320},
     year = {1998},
     volume = {48},
     number = {2},
     mrnumber = {1624327},
     zbl = {0954.46015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a7/}
}
TY  - JOUR
AU  - Borsík, Ján
AU  - Frič, Roman
TI  - Pointwise convergence fails to be strict
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 313
EP  - 320
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a7/
LA  - en
ID  - CMJ_1998_48_2_a7
ER  - 
%0 Journal Article
%A Borsík, Ján
%A Frič, Roman
%T Pointwise convergence fails to be strict
%J Czechoslovak Mathematical Journal
%D 1998
%P 313-320
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a7/
%G en
%F CMJ_1998_48_2_a7
Borsík, Ján; Frič, Roman. Pointwise convergence fails to be strict. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a7/

[FKE] Frič, R. and Kent, D. C.: Regularity and extension of maps. Math. Slovaca 42 (1992), 349–357. | MR

[FKO] Frič, R. and Koutník, V.: Completions for subcategories of convergence rings. In: Categorical Topology and its Relations to Modern Analysis, Algebra and Combinatorics, World Scientific Publishing Co., Singapore, 1989, pp. 195–207. | MR

[FZE] Frič, R. and Zanolin, F.: Coarse sequential convergence in groups, etc. Czechoslovak Math. J. 40 (115) (1990), 459–467. | MR

[FZS] Frič, R. and Zanolin, F.: Strict completions of $L _0^*$-groups. Czechoslovak Math. J. 42 (117) (1992), 589–598. | MR

[HES] Herrlich, H. and Strecker, G. E.: Category Theory. 2nd edition, Heldermann Verlag, Berlin, 1976. | MR

[LAC] Laczkovich, M.: Baire 1 functions. Real Analysis Exch. 9 (1983/84), 15–28.

[NOV] Novák, J.: On completions of convergence commutative groups. In: General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. | MR

[PAU] Paulík, L.: Strictness of $L_0$-ring completions. Tatra Mountains Math. Publ. 5 (1995), 169–175. | MR