On the existence of optimal controls for nonlinear infinite dimensional systems
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 291-312 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations.
We consider nonlinear systems with a priori feedback. We establish the existence of admissible pairs and then we show that the Lagrange optimal control problem admits an optimal pair. As application we work out in detail two examples of optimal control problems for nonlinear parabolic partial differential equations.
Classification : 34G20, 34H05, 47N20, 49J25, 49J27
Keywords: evolution triple; optimal control; monotone operator; hemicontinuous operator; parabolic system; property $(Q)$
@article{CMJ_1998_48_2_a6,
     author = {Fiacca, Antonella and Papageorgiou, Nikolaos S. and Papalini, Francesca},
     title = {On the existence of optimal controls for nonlinear infinite dimensional systems},
     journal = {Czechoslovak Mathematical Journal},
     pages = {291--312},
     year = {1998},
     volume = {48},
     number = {2},
     mrnumber = {1624323},
     zbl = {0955.34049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a6/}
}
TY  - JOUR
AU  - Fiacca, Antonella
AU  - Papageorgiou, Nikolaos S.
AU  - Papalini, Francesca
TI  - On the existence of optimal controls for nonlinear infinite dimensional systems
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 291
EP  - 312
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a6/
LA  - en
ID  - CMJ_1998_48_2_a6
ER  - 
%0 Journal Article
%A Fiacca, Antonella
%A Papageorgiou, Nikolaos S.
%A Papalini, Francesca
%T On the existence of optimal controls for nonlinear infinite dimensional systems
%J Czechoslovak Mathematical Journal
%D 1998
%P 291-312
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a6/
%G en
%F CMJ_1998_48_2_a6
Fiacca, Antonella; Papageorgiou, Nikolaos S.; Papalini, Francesca. On the existence of optimal controls for nonlinear infinite dimensional systems. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 291-312. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a6/

[1] N. U. Ahmed – K. L. Teo: Optimal Control of Distributed Parameter Systems. North Holland, New York, 1981. | MR

[2] E. Balder: Necessary and sufficient conditions for $L_1$-strong-weak lower semicontinuity of integral functionals. Nonlinear Analysis 11 (1987), 1399–1404. | DOI | MR

[3] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden, 1976. | MR | Zbl

[4] L. D. Berkovitz: Optimal Control Theory. Springer-Verlag, New York, 1974. | MR | Zbl

[5] L. Cesari: Existence theorems for weak and usual optimal solutions in Lagrange problems with unilateral constraints - I. Trans. Amer. Math. Society 124 (1966), 369–412. | DOI | MR | Zbl

[6] L. Cesari: Optimization-Theory and Applications. Springer-Verlag, New York, 1983. | MR | Zbl

[7] G. A. Edgar: Measurability in a Banach space - II. Indiana J. Math. 28 (1979), 559–579. | DOI | MR | Zbl

[8] A. Fryszkowski: The generalization of Cellina’s Fixed Point Theorem. Studia Math. 78 (1983), 213–215. | DOI | MR

[9] S. H. Hou: On Property $(Q)$ and other semicontinuity properties of multifunctions. Pacific Journal Math. 103 (1982), 39–56. | DOI | MR

[10] V. Levin: Borel sections of many valued maps. Siberian Math. J. 19 (1979), 434–438. | DOI | Zbl

[11] J. L. Lions: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin, 1971. | MR | Zbl

[12] N. S. Papageorgiou: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 32 (1987), 437–464. | MR | Zbl

[13] N. S. Papageorgiou: Convergence theorems for Banach space-valued integrable multifunctions. Intern. J. Math. and Math. Sci. 10 (1987), 433–442. | DOI | MR | Zbl

[14] D. Wagner: Survey on measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859–903. | DOI | MR

[15] E. Zeidler: Nonlinear Functional Analysis and Its Application II. Springer, New York, 1990. | MR