Singular Dirichlet boundary value problems. II: Resonance case
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 269-289 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm loc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm{d}x \infty $.
Existence results are established for the resonant problem $y^{\prime \prime }+\lambda _m \,a\,y=f(t,y)$ a.e. on $[0,1]$ with $y$ satisfying Dirichlet boundary conditions. The problem is singular since $f$ is a Carathéodory function, $a\in L_{{\mathrm loc}}^1(0,1)$ with $a>0$ a.e. on $[0,1]$ and $\int ^1_0 x(1-x)a(x)\,\mathrm{d}x \infty $.
Classification : 34B15, 34L30
@article{CMJ_1998_48_2_a5,
     author = {O'Regan, Donal},
     title = {Singular {Dirichlet} boundary value problems. {II:} {Resonance} case},
     journal = {Czechoslovak Mathematical Journal},
     pages = {269--289},
     year = {1998},
     volume = {48},
     number = {2},
     mrnumber = {1624319},
     zbl = {0957.34016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a5/}
}
TY  - JOUR
AU  - O'Regan, Donal
TI  - Singular Dirichlet boundary value problems. II: Resonance case
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 269
EP  - 289
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a5/
LA  - en
ID  - CMJ_1998_48_2_a5
ER  - 
%0 Journal Article
%A O'Regan, Donal
%T Singular Dirichlet boundary value problems. II: Resonance case
%J Czechoslovak Mathematical Journal
%D 1998
%P 269-289
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a5/
%G en
%F CMJ_1998_48_2_a5
O'Regan, Donal. Singular Dirichlet boundary value problems. II: Resonance case. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 269-289. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a5/

[1] Atkinson, F.V.: Discrete and continuous boundary problems. (1964), Academic Press, New York. | MR | Zbl

[2] Bobisud, L.E., and O’Regan, D.: Positive solutions for a class of nonlinear singular boundary value problems at resonance. Jour. Math. Anal. Appl. 184 (1994), 263–284. | DOI | MR

[3] Bobisud, L.E., O’Regan, D., and Royalty, W.D.: Singular boundary value problems. Appl. Anal. 23 (1986), 233–243. | DOI | MR

[4] Everitt, W.N., Kwong, M.K., and Zettl, A.: Oscillations of eigenfunctions of weighted regular Sturm Liouville problems. J. London Math. Soc. 27 (1983), 106–120. | DOI | MR

[5] Habets, P., and Zanolin, F.: Upper and lower solutions for a generalized Emden-Fowler equation. J. Math. Anal. Appl. 181 (1994), 684–700. | DOI | MR

[6] Iannacci, R., and Nkashama, M.N.: Unbounded perturbations of forced second order ordinary differential equations at resonance. Jour. Diff. Eq. 69 (1987), 289–309. | DOI | MR

[7] Mawhin, J.: Topological degree methods in nonlinear boundary value problems. AMS Regional Conf. Series in Math. 40, Providence, 1978. | MR

[8] Mawhin, J., and Ward, J.R.: Nonuniform nonresonance conditions at the first two eigenvalues for periodic solutions of forced Liénard and Duffing equations. Rocky M.J. Math. 112 (1982), 643–654. | DOI

[9] Naimark, M.A.: Linear differential operators, Part II. Ungar Publ. Co., London, 1968. | MR | Zbl

[10] O’Regan, D.: Theory of singular boundary value problems. World Scientific Press, Singapore, 1994.

[11] O’Regan, D.: Existence principles and theory for singular Dirichlet boundary value problems. Diff. Eqms. and Dynamical Systems 3 (1995), 289–304. | MR

[12] O’Regan, D.: Singular Dirichlet boundary value problems I: Superlinear and nonresonance case. Nonlinear Analysis 29 (1997), 221–245. | DOI | MR