The ${\scr Ar}$-free products of archimedean $l$-groups
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 243-252 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The objective of this paper is to give two descriptions of the $\scr A r$-free products of archimedean $\ell $-groups and to establish some properties for the $\scr A r$-free products. Specifically, it is proved that $\scr A r$-free products satisfy the weak subalgebra property.
The objective of this paper is to give two descriptions of the $\scr A r$-free products of archimedean $\ell $-groups and to establish some properties for the $\scr A r$-free products. Specifically, it is proved that $\scr A r$-free products satisfy the weak subalgebra property.
Classification : 06F20, 20F60
@article{CMJ_1998_48_2_a3,
     author = {Ton, Dao-Rong},
     title = {The ${\scr Ar}$-free products of archimedean $l$-groups},
     journal = {Czechoslovak Mathematical Journal},
     pages = {243--252},
     year = {1998},
     volume = {48},
     number = {2},
     mrnumber = {1624311},
     zbl = {0952.06025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a3/}
}
TY  - JOUR
AU  - Ton, Dao-Rong
TI  - The ${\scr Ar}$-free products of archimedean $l$-groups
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 243
EP  - 252
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a3/
LA  - en
ID  - CMJ_1998_48_2_a3
ER  - 
%0 Journal Article
%A Ton, Dao-Rong
%T The ${\scr Ar}$-free products of archimedean $l$-groups
%J Czechoslovak Mathematical Journal
%D 1998
%P 243-252
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a3/
%G en
%F CMJ_1998_48_2_a3
Ton, Dao-Rong. The ${\scr Ar}$-free products of archimedean $l$-groups. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 243-252. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a3/

[1] M. Anderson, T. Feil: Lattice-Ordered Groups (Introduction). D. Reidel Publishing Company, 1988. | MR

[2] S.J. Bernau: Free abelian lattice groups. Math. Ann. 180 (1969), 48–59. | DOI | MR | Zbl

[3] P. Conrad: Lattice-Ordered Groups. Tulane Lecture Notes, Tulane University, 1970. | Zbl

[4] A.M.W. Class, W.C. Holland: Lattice-Ordered Groups (Advances and Techniques). Kluwer Academic Publishers, 1989. | MR

[5] G. Gratzer: Universal Algebra, 2 nd ed. Springer-Verlag, New York, 1979. | MR

[6] W.C. Holland, E. Scringer: Free products of lattice-ordered groups. Algebra Universalis 2 (1972), 247–254. | DOI | MR

[7] J. Martinez: Free products in varieties of lattice ordered groups. Czechoslovak Math. J. 22(97) (1972), 535–553. | MR | Zbl

[8] J. Martinez: Free products of abelian $l$-groups. Czechoslovak Math. J. 23(98) (1973), 349–361. | MR | Zbl

[9] J. Martinez (ed): Ordered Algebraic Structure, 11–49. Kluwer Academic Publishers, 1989. | MR

[10] W.B. Powell, C. Tsinakis: Free products of abelian $l$-groups are cardinally indecomposable. Proc. Amer. Math. Soc. 86 (1982), 385–390. | MR

[11] W.B. Powell, C. Tsinakis: Free products in the class of abelian $l$-groups. Pacific J. Math. 104 (1983), 429–442. | DOI | MR

[12] W.B. Powell, C. Tsinakis: Free products of lattice ordered groups. Algebra Universalis 18 (1984), 178–198. | DOI | MR

[13] W.B. Powell, C. Tsinakis: Disjointness conditions for free products of $l$-groups. Archiv. Math. 46 (1986), 491–498. | DOI | MR

[14] Dao-Rong Ton: Note on free abelian lattice groups (to appear).

[15] Dao-Rong Ton: Free archimedean $l$-groups. Mathematica Scandinavica 74 (1994), 34–48. | DOI | MR

[16] W.C. Weinberg: Free lattice-ordered abelian lattice groups. Math. Ann. 15 (1963), 187–199.