@article{CMJ_1998_48_2_a11,
author = {Jakub{\'\i}k, J\'an and Csont\'oov\'a, M\'aria},
title = {Affine completness of projectable lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {359--363},
year = {1998},
volume = {48},
number = {2},
mrnumber = {1624264},
zbl = {0952.06024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a11/}
}
Jakubík, Ján; Csontóová, Mária. Affine completness of projectable lattice ordered groups. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 359-363. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a11/
[1] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. | Zbl
[2] P. F. Conrad, J. Harvey, Ch. Holland: The Hahn embedding theorem for lattice-ordered groups. Trans. Amer. Math. Soc. 108 (1963), 143–169. | DOI | MR
[3] D. Dorninger, G. Eigenthaler: On compatible and order-preserving functions. Algebra and Applications, Banach Center Publications Vol. 9, Warsaw, 1982, pp. 97–104. | MR
[4] L. Fuchs: Partially Ordered Algebraic Systems. Pergamon Press, Oxford, 1963. | MR | Zbl
[5] G. Grätzer: On Boolean functions, (Notes on lattice theory II). Revue de Math. Pures et Appliquées 7 (1962), 693–697. | MR
[6] G. Grätzer: Boolean functions on distributive lattices. Acta Math. Acad. Sci. Hungar. 15 (1964), 195–201. | DOI | MR
[7] H. Hahn: Über die nichtarchimedischen Grössensysteme. Sitzungsberichte K. Akad. Wiss., Math. Nat. Kl. IIa, 116, 1907, pp. 601–655.
[8] T. K. Hu: Characterization of algebraic functions in equational classes generated by independent primal algebras. Algebra Univ. 1 (1971), 187–191. | MR | Zbl
[9] J. Jakubík: Affine completeness of complete lattice ordered groups. Czechoslovak Math. J. 45 (1995), 571–576. | MR
[10] A. F. Pixley: Functional Affine Completeness and Arithmetical Varieties. Lecture Notes, Montréal, 1991.
[11] M. Ploščica: Affine complete order of distributive lattices. Order 11 (1994), 385–390. | DOI | MR
[12] D. Schweigert: Über endliche, ordnungspolynomvollständige Verbände. Monatshefte Math. 78 (1974), 68–76. | DOI | MR | Zbl
[13] H. Werner: Produkte von Kongruenzklassengeometrien universeller Algebren. Math. Z. 121 (1971), 111–140. | DOI | MR | Zbl