Keywords: Weakly commuting; compatible and weakly compatible mappings; asymptotically regular sequence; coincidence point and fixed point; Kannan mapping
@article{CMJ_1998_48_2_a10,
author = {Pathak, H. K. and Kang, S. M. and Cho, Y. J.},
title = {Coincidence and fixed point theorems for nonlinear hybrid generalized contractions},
journal = {Czechoslovak Mathematical Journal},
pages = {341--357},
year = {1998},
volume = {48},
number = {2},
mrnumber = {1624260},
zbl = {0949.54057},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a10/}
}
TY - JOUR AU - Pathak, H. K. AU - Kang, S. M. AU - Cho, Y. J. TI - Coincidence and fixed point theorems for nonlinear hybrid generalized contractions JO - Czechoslovak Mathematical Journal PY - 1998 SP - 341 EP - 357 VL - 48 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a10/ LA - en ID - CMJ_1998_48_2_a10 ER -
Pathak, H. K.; Kang, S. M.; Cho, Y. J. Coincidence and fixed point theorems for nonlinear hybrid generalized contractions. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 341-357. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a10/
[1] I. Beg and A. Azam: Fixed point theorems for Kannan mappings. Indian J. Pure and Appl. Math. 17(11) (1986), 1270–1275. | MR
[2] I. Beg and A. Azam: Fixed points of asymptotically regular multivalued mappings. J. Austral. Math. Soc. (Series A) 53 (1992), 313–326. | DOI | MR
[3] K. M. Das and K. V. Naik: Common fixed point theorems for commuting maps on a metric space. Proc. Amer. Math. Soc. 77 (1979), 369–373. | MR
[4] B. Fisher: Common fixed points of four mappings. Bull. Inst. Math. Acad. Sinica 11 (1983), 103–113. | MR | Zbl
[5] G.Jungck: Commuting mappings and fixed points. Amer. Math. Monthly 83 (1976), 261-163. | DOI | MR | Zbl
[6] G.Jungck: Compatible mappings and common fixed points. Internat. J. Math. & Math. Sci. 9 (1986), 771–779. | DOI | MR
[7] G.Jungck: Common fixed points for commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103 (1988), 997–983. | MR | Zbl
[8] H. Kaneko: Single-valued and multi-valued f-contractions. Boll. Un. Mat. Ital. 4-A (1985), 29–33. | MR | Zbl
[9] H. Kaneko: A common fixed point of weakly commuting multi-valued mappings. Math. Japonica 33(5) (1988), 741–744. | MR
[10] H. Kaneko and S. Sessa: Fixed point theorem for compatible multi-valued and single-valued mappings. Internat. J. Math. & Math. Sci. 12 (1989), 257–262. | DOI | MR
[11] R. Kannan: Some results on fixed points. Bull. Calcutta. Math. Soc. 60 (1968), 71–76. | MR | Zbl
[12] R. Kannan: Fixed point theorem in reflexive Banach spaces. Proc. Amer. Math. Soc. 38 (1973), 111–118. | DOI | MR
[13] T. Kubiak: Fixed point theorems for contractive type multi-valued mappings. Math. Japonica 30 (1985), 89–101. | MR
[14] H. K. Pathak: On a fixed point theorem of Jungck. to appear in Proceedings of the First World Congress of Nonlinear Analyst, 1992. | MR
[15] H. K. Pathak: On common fixed points of weak compatible mappings in metric and Banach spaces. to appear in Nonlinear Functional Analysis and its Applications, special volume (Ed. T. M. Rassias) (1993).
[16] H. K. Pathak: Fixed point theorem for weak compatible multi-valued and single-valued mappings. Acta. Math. Hungar. 67(1–2) (1995), 69–78. | DOI | MR
[17] H. K. Pathak and V. Popa: On common fixed points of weak compatible mappings in metric spaces. Studii Si Ćercetǎri Stiintifice, Seria: Mathematicǎ 3 (1994), 89–100. | MR
[18] H. K. Pathak and V. Popa: Common fixed points of weak compatible mappings. Studia Univ. Babes-Bolyai Mathematica 34(1) (1994), 65–78. | MR
[19] S. Nadler: Multi-valued contraction mappings. Pacific J. Math. 20 (1969), 475–488. | DOI | MR | Zbl
[20] B. E. Rhoades, S. Sessa, M. S. Khan and M. Swaleh: On fixed points of asymptotically regular mappings. J. Austral. Math. Soc. (Series A) 43 (1987), 328–346. | DOI | MR
[21] S. Sessa: On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) 32(46) (1982), 146–153. | MR | Zbl
[22] C. Shiau, K. K. Tan and C. S. Wong: A class of quasi-nonexpansive multi-valued maps. Canad. Math. Bull. 18 (1975), 707–714. | DOI | MR
[23] S. L. Singh and S. P. Singh: A fixed point theorem. Indian J. Pure and Appl. Math. 11 (1980), 1584–1586. | MR
[24] S. L. Singh, K. S. Ha and Y. J. Cho: Coincidence and fixed points of nonlinear hybrid contractions. Internat. J. Math. & Math. Sci. 12(2) (1989), 247–256. | DOI | MR
[25] R. E. Smithson: Fixed points for contractive multi-functions. Proc. Amer. Math. Soc. 27 (1971), 192–194. | DOI | MR
[26] C. S. Wong: On Kannan maps. Proc. Amer. Math. Soc. 47 (1975), 105–111. | DOI | MR