Approximation of almost periodic functions by periodic ones
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 193-205
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
It is not the purpose of this paper to construct approximations but to establish a class of almost periodic functions which can be approximated, with an arbitrarily prescribed accuracy, by continuous periodic functions uniformly on ${\mathbb R} = (-\infty ; +\infty )$.
It is not the purpose of this paper to construct approximations but to establish a class of almost periodic functions which can be approximated, with an arbitrarily prescribed accuracy, by continuous periodic functions uniformly on ${\mathbb R} = (-\infty ; +\infty )$.
@article{CMJ_1998_48_2_a0,
author = {Fischer, Alexander},
title = {Approximation of almost periodic functions by periodic ones},
journal = {Czechoslovak Mathematical Journal},
pages = {193--205},
year = {1998},
volume = {48},
number = {2},
mrnumber = {1624299},
zbl = {0953.42005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a0/}
}
Fischer, Alexander. Approximation of almost periodic functions by periodic ones. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 2, pp. 193-205. http://geodesic.mathdoc.fr/item/CMJ_1998_48_2_a0/
[1] Amerio, L. – Prouse, G.: Almost Periodic Functions and Functional Equations. N.Y. Van Nostrand Reihold Company, 1971. | MR
[2] Bohr, H.: Zur Theorie der fastperiodischen Funktionen, I, II, III Teil. 1925.
[3] Coppel, W. A.: Almost periodic properties of ordinary differential equations. Ann. Mat. Pura Appl. 76 (1963). | MR
[4] Levitan, B. M.: Almost Periodic Functions. G.I.T.L. Moscow, 1953. (Russian) | MR
[5] Levitan, B. M. – Zikov, V. V.: Almost Periodic Functions and Differential Equations. I. M. U. Moscow, 1978. () | MR