Small idempotent clones. I
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 105-118 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
G. Grätzer and A. Kisielewicz devoted one section of their survey paper concerning $p_n$-sequences and free spectra of algebras to the topic “Small idempotent clones” (see Section 6 of [18]). Many authors, e.g., [8], [14, 15], [22], [25] and [29, 30] were interested in $p_n$-sequences of idempotent algebras with small rates of growth. In this paper we continue this topic and characterize all idempotent groupoids $(G,\cdot )$ with $p_2(G,\cdot )\le 2$ (see Section 7). Such groupoids appear in many papers see, e.g. [1], [4], [21], [26, 27], [25], [28, 30, 31, 32] and [34].
Classification : 08A40, 08B05, 20M07, 20N02
@article{CMJ_1998_48_1_a9,
     author = {Dudek, J\'ozef},
     title = {Small idempotent clones. {I}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {105--118},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614013},
     zbl = {0931.20055},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a9/}
}
TY  - JOUR
AU  - Dudek, Józef
TI  - Small idempotent clones. I
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 105
EP  - 118
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a9/
LA  - en
ID  - CMJ_1998_48_1_a9
ER  - 
%0 Journal Article
%A Dudek, Józef
%T Small idempotent clones. I
%J Czechoslovak Mathematical Journal
%D 1998
%P 105-118
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a9/
%G en
%F CMJ_1998_48_1_a9
Dudek, Józef. Small idempotent clones. I. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a9/

[1] J. Berman: Free spectra of 3-element algebras. Universal Algebra and Lattice Theory (Puebla, 1982). Lecture Notes in Math., 1004, Springer-Verlag, Berlin, New York, 1983, pp. 10–53. | MR | Zbl

[2] S. Crvenkovi and J. Dudek: Rectangular groupoids. Czechoslovak Math. J. 35 (1985), 405–414. | MR

[3] B. Csákány: On affine spaces over prime fields. Acta Sci. Math. (Szeged) 37 (1975), 33–36. | MR

[4] B. Csákány: All minimal clones on the three-element set. Acta Cybernet. 6 (1983), 227–238. | MR

[5] J. Dudek: Some remarks on distributive groupoids. Czechoslovak Math. J. 31 (1981), 58–64. | MR | Zbl

[6] J. Dudek: On binary polynomials in idempotent commutative groupoids. Fund. Math. 120 (1984), 187–191. | DOI | MR | Zbl

[7] J. Dudek: Varieties of idempotent commutative groupoids. Fund. Math. 120 (1984), 193–204. | DOI | MR | Zbl

[8] J. Dudek: Polynomial characterization of some idempotent algebras. Acta Sci. Math. 50 (1986), 39–49. | MR | Zbl

[9] J. Dudek: On the minimal extension of sequences. Algebra Universalis 23 (1986), 308–312. | DOI | MR | Zbl

[10] J. Dudek: Polynomials in idempotent commutative groupoids. Dissertationes Math. 286 (1989), 1–55. | MR | Zbl

[11] J. Dudek: $p_n$-sequences. The minimal extension of sequences. Abstract. Presented at the Conference on Logic and Algebra dedicated to Roberto Magari, on his 60$^{\mathrm th}$ Birthday, Pontignano (Siena) 26–30 April 1994.

[12] J. Dudek and J. Tomasik: Affine spaces over GF(4). (to appear). | MR

[13] B. Ganter and H. Werner: Equational classes of Steiner systems. Algebra Universalis 5 (1975), 125–140. | DOI | MR

[14] J. A. Gerhard: The lattice of quational classes of idempotent semigroups. J. Algebra 15, 195–224. | DOI | MR

[15] J. A. Gerhard: The number of polynomials of idempotent semigroups. J. Algebra 18, 366–376. | MR | Zbl

[16] G. Grätzer: Composition of functions. Proceedings of the conference on universal algebra (Kingston, 1969), Queen’s Univ., Kingston, Ont., 1970, pp. 1–106. | MR

[17] G. Grätzer: Universal Algebra. Second edition. Springer-Verlag, New York-Heidelberg-Berlin, 1979. | MR

[18] G. Grätzer and A. Kisielewicz: A survey of some open problems on $p_n$-sequences and free spectra of algebras and varieties. Universal Algebra and Quasigroup Theory, A.  Romanowska and J. D. H. Smith (eds.), Helderman Verlag (Berlin), 1992, pp. 57–88. | MR

[19] G. Grätzer and R. Padmanabhan: On commutative idempotent and nonassociative groupoids. Proc. Amer. Math. 28 (1971), 75–78. | DOI | MR

[20] G. Grätzer and J. Płonka: On the number of polynomials of an idempotent algebra I. Pacific J. Math. 22 (1970), 697–709. | DOI | MR

[21] H. Kaiser: On a problem in the theory of primal algebras. Algebra Universalis 5 (1974), 307–311. | DOI | MR

[22] A. Kisielewicz: On idempotent algebra with $p_n=2n$. Algebra Universalis 23 (1981), 313–323. | DOI | MR

[23] E. Marczewski: Independence and homomorphisms in abstract algebras. Fund. Math. 50 (1961), 45–61. | DOI | MR | Zbl

[24] A. Mitschke and H. Werner: On groupoids representable by vector spaces over finite fields. Arch. Math. 24 (1973), 14–20. | DOI | MR

[25] R. Padmanabhan: Characterization of a class of groupoids. Algebra Universalis 1 (1972), 374–382. | DOI | MR | Zbl

[26] P. P. Pálfy: Minimal clones. Preprint No. 27/1984, Budapest, May 1984, Math. Inst. of the Hungarian Academy of Sciences, H-1053 Budapest, Reáltanoda u. 13–15. Hungary.

[27] P. P. Pálfy: The arity of minimal clones. Acta Sci. Math. 50 (1986), 331–333. | MR

[28] R. E. Park: A four-element algebra whose identities are not finitely based. Algebra Universalis 11 91980, 255–260. | MR | Zbl

[29] J. Płonka: On algebras with $n$ distinct $n$-ary operations. Algebra Universalis 1 (1971), 73–79. | DOI | MR

[30] J. Płonka: On algebras with at most $n$ distinct $n$-ary operations. Algebra Universalis 1 (1971), 80–85. | DOI | MR

[31] J. Płonka: On equational classes of abstract algebras defined by regular equations. Fund. Math. 64 (1969), 241–247. | DOI | MR

[32] J. Płonka: On $k$-cyclic groupoids. Math. Japonica 30 (1985), no. 3, 371–382. | MR

[33] J. Płonka: Subdirectly irreducible groupoids in some varieties. CMUC 24/4 (1983), 631–645. | MR

[34] S. K. Stein: Homogeneous quasigroup. Pacific J. Math. 14 (1964), 1091–1102. | DOI | MR