On Lipschitz conditions for ordinary differential equations in Fréchet spaces
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 95-103 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We will give an existence and uniqueness theorem for ordinary differential equations in Fréchet spaces using Lipschitz conditions formulated with a generalized distance and row-finite matrices.
We will give an existence and uniqueness theorem for ordinary differential equations in Fréchet spaces using Lipschitz conditions formulated with a generalized distance and row-finite matrices.
Classification : 34G20, 46G05
@article{CMJ_1998_48_1_a8,
     author = {Herzog, Gerd},
     title = {On {Lipschitz} conditions for ordinary differential equations in {Fr\'echet} spaces},
     journal = {Czechoslovak Mathematical Journal},
     pages = {95--103},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614009},
     zbl = {0930.34042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a8/}
}
TY  - JOUR
AU  - Herzog, Gerd
TI  - On Lipschitz conditions for ordinary differential equations in Fréchet spaces
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 95
EP  - 103
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a8/
LA  - en
ID  - CMJ_1998_48_1_a8
ER  - 
%0 Journal Article
%A Herzog, Gerd
%T On Lipschitz conditions for ordinary differential equations in Fréchet spaces
%J Czechoslovak Mathematical Journal
%D 1998
%P 95-103
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a8/
%G en
%F CMJ_1998_48_1_a8
Herzog, Gerd. On Lipschitz conditions for ordinary differential equations in Fréchet spaces. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 95-103. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a8/

[De] K. Deimling: Ordinary differential equations in Banach spaces. Lecture Notes in Mathematics 596, Springer, 1977. | DOI | MR | Zbl

[Dz] Sh. T. Dzhabbharov: A generalized contraction-mapping principle and infinite systems of differential equations. Diff. Eqs. 26 (1990), 944–952. | MR

[Go] A. N. Godunov, A. P. Durkin: Differential equations in linear topological spaces. Moscow Univ. Math. Bull. 24 (1969), 93–100. | MR

[He1] G. Herzog: Über gewöhnliche Differentialgleichungen in Frécheträumen. Dissertation, Univ. Karlsruhe, 1992. | Zbl

[He2] G. Herzog: On ordinary linear differential equations in $J$. Demonstratio Math. 28 (1995), 383–398. | MR

[He3] G. Herzog: On existence and uniqueness conditions for ordinary differential equations in Fréchet spaces. Studia Sci. Math. Hungar. 32 (1996), 367–375. | MR | Zbl

[Ko] K. H. Körber: Das Spektrum zeilenfiniter Matrizen. Math. Ann. 181 (1969), 8–34. | DOI | MR

[Le1] R. Lemmert, Ä. Weckbach: Charakterisierungen zeilenendlicher Matrizen mit abzählbarem Spektrum. Math. Z. 188 (1984), 119–124. | DOI | MR

[Le2] R. Lemmert: On ordinary differential equations in locally convex spaces. Nonlinear Analysis 10 (1986), 1385–1390. | DOI | MR | Zbl

[Lo] S. G. Lobanov: Solvability of linear ordinary differential equations in locally convex spaces. Moscow Univ. Math. Bull. 35 (1980), 1–5. | MR | Zbl

[Mo] K. Moszyński, A. Pokrzywa: Sur les systèmes infinis d’équations différentielles ordinaires dans certains espaces de Fréchet. Dissertationes Math. CXV, 1974.

[Sch] J. Schröder: Iterationsverfahren bei allgemeinerem Abstandsbegriff. Math. Z. 66 (1956), 111–116. | DOI | MR

[Ul] H. Ulm: Elementarteilertheorie unendlicher Matrizen. Math. Ann. 114 (1937), 493–505. | DOI | MR | Zbl

[Wi] J. H. Williamson: Spectral representation of linear transformations in $\omega $. Proc. Cambridge Philos. Soc. 47 (1951), 461–472. | MR | Zbl