Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 85-94 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$.
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over $R$, and prove that it is described by a maximal compact attractor in $H^2(R)$.
Classification : 35B40, 35Q53, 47H20, 58F39
Keywords: Korteweg-de Vries equation; attractor; unbounded domain.
@article{CMJ_1998_48_1_a7,
     author = {Lauren\c{c}ot, Ph.},
     title = {Compact attractor for weakly damped driven {Korteweg-de} {Vries} equations on the real line},
     journal = {Czechoslovak Mathematical Journal},
     pages = {85--94},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614084},
     zbl = {0928.35145},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a7/}
}
TY  - JOUR
AU  - Laurençot, Ph.
TI  - Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 85
EP  - 94
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a7/
LA  - en
ID  - CMJ_1998_48_1_a7
ER  - 
%0 Journal Article
%A Laurençot, Ph.
%T Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line
%J Czechoslovak Mathematical Journal
%D 1998
%P 85-94
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a7/
%G en
%F CMJ_1998_48_1_a7
Laurençot, Ph. Compact attractor for weakly damped driven Korteweg-de Vries equations on the real line. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 85-94. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a7/

[Al] E.A.  Alarcón: Existence and finite dimensionality of the global attractor for a class of nonlinear dissipative equations. Proc. Roy. Soc. Edinburgh 123A (1993), 893–916. | MR

[BV] A.V.  Babin, M.I. Vishik: Attractors of partial differential evolution equations in an unbounded domain. Proc. Roy. Soc. Edinburgh 116A (1990), 221–243. | MR

[Ba] J.  Ball: A proof of the existence of global attractors for damped semilinear wave equations. (to appear). | MR

[BSc] J.  Bona, R.  Scott: Solutions of the Korteweg-de Vries equation in fractional order Sobolev spaces. Duke Math. J. 43 (1976), 87–99. | DOI | MR

[BSm] J.L.  Bona, R.  Smith: The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London 278A (1975), 555–604. | DOI | MR

[Fe] E.  Feireisl: Bounded, locally compact global attractors for semilinear damped wave equations on $R^N$. Diff. Integral Eq. 9 (1996), 1147–1156. | MR

[Gh1] J.M.  Ghidaglia: Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time. J. Diff. Eq. 74 (1988), 369–390. | DOI | MR | Zbl

[Gh2] J.M.  Ghidaglia: A note on the strong convergence towards attractors of damped forced KdV equation. J. Diff. Eq. 110 (1994), 356–359. | DOI | MR

[GT] J.M.  Ghidaglia, R.  Temam: Attractors for damped nonlinear hyperbolic equations. J. Math. Pures Appl. 66 (1987), 273–319. | MR

[Ha] J.K.  Hale: Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs 25, Amer. Math. Soc., Providence, R.I., 1988. | MR | Zbl

[MGK] R.M.  Miura, C.S.  Gardner, M.D.  Kruskal: Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968), 1204–1209. | DOI | MR

[Te] R.  Temam: Infinite-dimensional dynamical systems in mechanics and physics. Appl. Math. Sc. 68, Springer-Verlag, New York, 1988. | DOI | MR | Zbl