Characterizations of absolute $F_{\sigma\delta}$-sets
Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 55-64 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 54E15, 54E35, 54E50, 54H05
Keywords: metric space; $F_{\sigma \delta }$-set; bicomplete quasi-metric; complete sequence of covers; compact family of sets; cotopology
@article{CMJ_1998_48_1_a4,
     author = {Junnila, H. J. K. and K\"unzi, H. P. A.},
     title = {Characterizations of absolute $F_{\sigma\delta}$-sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {55--64},
     year = {1998},
     volume = {48},
     number = {1},
     mrnumber = {1614072},
     zbl = {0926.54018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a4/}
}
TY  - JOUR
AU  - Junnila, H. J. K.
AU  - Künzi, H. P. A.
TI  - Characterizations of absolute $F_{\sigma\delta}$-sets
JO  - Czechoslovak Mathematical Journal
PY  - 1998
SP  - 55
EP  - 64
VL  - 48
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a4/
LA  - en
ID  - CMJ_1998_48_1_a4
ER  - 
%0 Journal Article
%A Junnila, H. J. K.
%A Künzi, H. P. A.
%T Characterizations of absolute $F_{\sigma\delta}$-sets
%J Czechoslovak Mathematical Journal
%D 1998
%P 55-64
%V 48
%N 1
%U http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a4/
%G en
%F CMJ_1998_48_1_a4
Junnila, H. J. K.; Künzi, H. P. A. Characterizations of absolute $F_{\sigma\delta}$-sets. Czechoslovak Mathematical Journal, Tome 48 (1998) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/CMJ_1998_48_1_a4/

[AGD1] J. M. Aarts, J. de Groot and R. H. McDowell: Cocompactness. Nieuw Arch. Wisk. 18 (1970), 2–15. | MR

[AGD] J. M. Aarts, J. de Groot and R. H. McDowell: Cotopology for metrizable spaces. Duke Math. J. 37 (1970), 291–295. | DOI | MR

[A] A. V. Arhangel’skij: On topological spaces which are complete in the sense of Čech. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1961), 37–40 (in Russian). | MR

[Bi] R. H. Bing: Extending a metric. Duke Math. J. 14 (1947), 511–519. | DOI | MR | Zbl

[C] E. Čech: On bicompact spaces. Annals of Math. 38 (1937), 823–844. | DOI | MR

[D] J. Deák: Extending a quasi-metric. Studia Sci. Math. Hung. 28 (1993), 105–113. | MR

[DGLM] J. Dijkstra, T. Grilliot, D. Lutzer and J. van Mill: Function spaces of low Borel complexity. Proc. Amer. Math. Soc. 94 (1985), 703–710. | DOI | MR

[vE] F. van Engelen: Countable products of zero-dimensional absolute $F_{\sigma \delta }$ spaces. Indag. Math. 46 (1984), 391–399. | MR

[E] R. Engelking: General Topology. Heldermann, Berlin, 1989. | MR | Zbl

[FK] N. Ferrario and H. P.A. Künzi: Bicompleteness of the fine quasi-uniformity. Math. Proc. Camb. Phil. Soc. 109 (1991), 167–186. | DOI | MR

[FL] P. Fletcher and W. F. Lindgren: Quasi-uniform Spaces. Marcel Dekker, New York, 1982. | MR

[F1] Z. Frolík: Generalizations of the $G_\delta $-property of complete metric spaces. Czech. Math. J. 10 (1960), 359–379. | MR

[F2] Z. Frolík: On the descriptive theory of sets. Czech. Math. J. 13 (1963), 335–359. | MR

[H] R. W. Hansell: General embedding properties of absolute Borel and Souslin spaces. Proc. Amer. Math. Soc. 27 (1971), 343–352. | DOI | MR | Zbl

[J1] H. J. K. Junnila: Neighbornets. Pacific J. Math. 76 (1978), 83–108. | MR | Zbl

[J2] H. J. K. Junnila: On $\sigma $-spaces and pseudometrizable spaces. Topology Proceedings 4 (1979), 121–132. | MR

[J3] H. J. K. Junnila: On strongly zero-dimensional $F_\sigma $-metrizable stratifiable spaces. In: Topology. General and Algebraic Topology, and Applications (Proc. Internat. Topological. Confer. Leningrad, 1982), L. D. Faddeev and A. A. Mal’cev (eds.), Lecture Notes in Math. 1060, Springer Verlag, Berlin, 1984, pp. 67–75. | MR

[K] H. P. A. Künzi: On strongly quasi-metrizable spaces. Arch. Math. (Basel) 41 (1983), 57–63. | DOI

[KRS] H. P. A. Künzi, S. Romaguera and S. Salbany: Topological spaces that admit bicomplete quasi-pseudometrics. Ann. Sci. Budapest 37 (1994), 185–195. | MR

[RS] S. Romaguera and S. Salbany: On bicomplete quasi-pseudometrizability. Top. Appl. 50 (1993), 283–289. | MR

[Si] W. Sierpiński: Sur une définition topologique des ensembles $F_{\sigma \delta }$. Fund. Math. 6 (1924), 24–29. | DOI

[St] A. H. Stone: Borel and analytic metric spaces. Proc. Washington State Univ. Confer. on Gen. Topology, Pi Mu Epsilon. Washington Alpha Center, 1970, pp. 20–33. | MR | Zbl